Человеко машинный интерфейс асу тп лекции. Краткая характеристика интерфейсов асу тп

Программное обеспечение АСУ МС представляет собой клиент-серверное решение, построенное на платформе MS SQL Server версий 2005 и выше и обеспечивающее разделение прав доступа к данным метрологической службы предприятий. Предусмотрены версии комплекса АСУ МС как для работы с единой, так и с распределенной базой данных (объем базы данных - до 150 000 СИ). Функциональность АСУ МС обеспечивает учет, планирование, контроль выполнения обслуживания, анализ состояния приборного парка. Специальная задача «Приемка-Выдача СИ» для поверочной лаборатории позволяет минимизировать трудозатраты на ввод данных и оформление документов по результатам обслуживания. Права пользователя для работы в различных разделах данных настраиваются администратором АСУ МС в зависимости от специфики организации метрологической службы.


Интерфейс АСУ МС позволяет получать, в зависимости от поставленной задачи, любые информационные сечения данных и формировать отчеты по ним. Универсальный фильтр дополнен упрощенной функцией выборки. Предусмотрены следующие степени свободы в настройке экранной формы: определение пользователем необходимого набора вкладок, столбцов, а также порядок их следования и ширину, сортировка данных по любому сочетанию столбцов и любая выборка данных в таблице. События МК, ремонтов, отказов, ТО отображаются на экране в табличных формах, с возможностью анализа накопленной статистики.

Электронный паспорт СИ помимо основной учетной информации и регламентов обслуживания, содержит:

  • Историю событий в эксплуатации.
  • Перечень комплектующих устройств (в случае, если это паспорт на комплект или канал).
  • Ссылки на паспорта каналов или комплексов (если устройство входит в состав канала).
  • Набор измеряемых параметров.
  • Количества драгметаллов.
  • Дополнительные характеристики си.

Администратор АСУ МС определяет учетную политику и настраивает образ паспорта, скрывая ненужные поля и вкладки.

Графики метрологического контроля и ремонтов могут формироваться с использованием поверочных (ремонтных) циклов. Формируется график ТО. На основе графиков и тарифов, хранящихся в базе данных, рассчитываются плановые затраты на обслуживание. Трудозатраты на выполнение обслуживания рассчитываются исходя из графиков и норм времени, хранящихся в базе данных.

Отчеты в АСУ МС формируются с использованием генератора FastReport; настраиваются набор и ширина столбцов, шрифт, цвет и т. д.; отчеты сохраняются в форматах rtf, xls, html. Библиотека отчетов, входящая в комплект поставки АСУ МС, может быть дополнена по запросам пользователей.

Delphi создает приложения Windows

MS-Windows предоставляет пользователям оболочку графического интерфейса (GUI), которая обеспечивает стандартную среду пользователя и программиста. (GUI) предлагает более сложное и дружелюбное окружение пользователя, чем командно-управляемый интерфейс DOS. Работа в Windows основана на интуитивно понятных принципах. Вам легко переключиться с задачи на задачу и осуществлять обмен информацией между ними. Однако разработчики приложений традиционно сталкиваются с трудностями программирования, поскольку организация среды Windows является чрезвычайно сложной.

Delphi - язык и среда программирования, относящаяся к классу RAD- (Rapid Application Development «Средство быстрой разработки приложений») средств CASE - технологии. Delphi сделала разработку мощных приложений Windows быстрым процессом, доставляющим вам удовольствие. Приложения Windows, для создания которых требовалось большое количество человеческих усилий например в С++, теперь могут быть написаны одним человеком, использующим Delphi.

Интерфейс Windows обеспечивает полное перенесение CASE-технологий в интегрированную систему поддержки работ по созданию прикладной системы на всех фазах жизненного цикла работы и проектирования системы.

Delphi обладает широким набором возможностей, начиная от проектировщика форм и кончая поддержкой всех форматов популярных баз данных. Среда устраняет необходимость программировать такие компоненты Windows общего назначения, как метки, пиктограммы и даже диалоговые панели. Работая в, вы неоднократно видели одинаковые «объекты» во многих разнообразных приложениях. Диалоговые панели (например Choose File и Save File) являются примерами многократно используемых компонентов, встроенных непосредственно в Delphi, который позволяет приспособить эти компоненты к имеющийся задаче, чтобы они работали именно так, как требуется создаваемому приложению. Также здесь имеются предварительно определенные визуальные и невизуальные объекты, включая кнопки, объекты с данными, меню и уже построенные диалоговые панели. С помощью этих объектов можно, например, обеспечить ввод данных просто несколькими нажатиями кнопок мыши, не прибегая к программированию. Это наглядная реализация применений CASE-технологий в современном программировании приложений. Та часть, которая непосредственно связана с программированием интерфейса пользователя системой получила название визуальное программирование

Выгоды от проектирования АРМ в среде Windows с помощью Delphi:

    Устраняется необходимость в повторном вводе данных;

    Обеспечивается согласованность проекта и его реализации;

    Увеличивается производительность разработки и переносимость программ.

Визуальное программирование как бы добавляет новое измерение при создании создании приложений, давая возможность изображать эти объекты на экране монитора до выполнения самой программы. Без визуального программирования процесс отображения требует написания фрагмента кода, создающего и настрающего объект «по месту». Увидеть закодированные объекты было возможно только в ходе исполнения программы. При таком подходе достижение того, чтобы объекты выглядели и вели себя заданным образом, становится утомительным процессом, который требует неоднократных исправлений программного кода с последующей прогонкой программы и наблюдения за тем, что в итоге получилось.

Благодаря средствам визуальной разработки можно работать с объектами, держа их перед глазами и получая результаты практически сразу. Способность видеть объекты такими, какими они появляются в ходе исполнения программы, снимает необходимость проведения множества операций вручную, что характерно для работы в среде не обладающей визуальными средствами - вне зависимости от того, является она объектно-ориентированной или нет. После того, как объект помещен в форму среды визуального программирования, все его атрибуты сразу отображаются в виде кода, который соответствует объекту как единице, исполняемой в ходе работы программы.

Размещение объектов в Delphi связано с более тесными отношениями между объектами и реальным программным кодом. Объекты помещаются в вашу форму, при этом код, отвечающий объектам, автоматически записывается в исходный файл. Этот код компилируется, обеспечивая существенно более высокую производительность, чем визуальная среда, которая интерпретирует информацию лишь в ходе исполнения программы.

Интерфейс пользователя системой

ВВЕДЕНИЕ

Современные методы проектирования деятельности пользователей АСУ сложились в рамках системотехнической концепции проектирования, в силу чего учет человеческого фактора ограничился решением проблем согласования «входов» и «выходов» человека и машины. Вместе с тем при анализе неудовлетворенности пользователей АСУ удается выявить, что она часто объясняется отсутствием единого, комплексного подхода к проектированию систем взаимодействия.

Использование системного подхода позволяет принять во внимание множество факторов самого различного характера, выделить из них те, которые оказывают самое большое влияние с точки зрения имеющихся общесистемных целей и критериев, и найти пути и методы эффективного воздействия на них. Системный подход основан на применении ряда основных понятий и положений, среди которых можно выделить понятия системы, подчиненности целей и критериев подсистем общесистемным целям и критериям и т.д. Системный подход позволяет рассматривать анализ и синтез различных по своей природе и сложности объектов с единой точки зрения, выявляя при этом важнейшие характерные черты функционирования системы и учитывая наиболее существенные для всей системы факторы. Значение системного подхода особенно велико при проектировании и эксплуатации таких систем, как автоматизированные системы управления (АСУ), которые по существу являются человеко-машинными системами, где человек выполняет роль субъекта управления .

Системный подход при проектировании представляет собой комплексное, взаимосвязанное, пропорциональное рассмотрение всех факторов, путей и методов решения сложной многофакторной и многовариантной задачи проектирования интерфейса взаимодействия. В отличие от классического инженерно-технического проектирования при использовании системного подхода учитываются все факторы проектируемой системы - функциональные, психологические, социальные и даже эстетические.

Автоматизация управления неизбежно влечет за собой осуществление системного подхода, так как она предполагает наличие саморегулирующейся системы, обладающей входами, выходами и механизмом управлением. Уже само понятие системы взаимодействия указывает на необходимость рассмотрения окружающей среды, в которой она должна функционировать. Таким образом, система взаимодействия должна рассматриваться как часть более обширной системы - АСУ реального времени, тогда как последняя - системы управляемой среды.

В настоящее время можно считать доказанным, что главная задача проектирования интерфейса пользователя заключается не в том, чтобы рационально «вписать» человека в контур управления, а в том, чтобы, исходя из задач управления объектом, разработать систему взаимодействия двух равноправных партнеров (человек-оператор и аппаратно-программный комплекс АСУ), рационально управляющих объектом управления.

ПРЕДМЕТНАЯ ОБЛАСТЬ

Итак, очевидно, что человек-оператор является замыкающим звеном системы управления, т.е. субъектом управления, а АПК (аппаратно-программный комплекс) АСУ является инструментальным средством реализации его управленческой (оперативной) деятельности, т.е. объектом управления . По определению В.Ф.Венды, АСУ представляет собой гибридный интеллект, в котором оперативный (управленческий) состав и АПК АСУ являются равноправными партнерами при решении сложных задач управления.

Рациональная организация труда операторов АРМ является одним из важнейших факторов, определяющих эффективное функционирование системы в целом. В подавляющем большинстве случаев управленческий труд - опосредованная деятельность человека, поскольку в условиях АСУ он ведет управление, «не видя» реального объекта. Между реальным объектом управления и человеком-оператором находится информационная модель объекта (средства отображения информации). Поэтому возникает проблема проектирования не только средств отображения информации, но и средств взаимодействия человека-оператора с техническими средствами АСУ, т.е. проблема проектирования системы, которую нам следует назвать интерфейс пользователя.

Интерфейс взаимодействия человека с техническими средствами АСУ может быть структурно изображен (см. на рис.1.). Он состоит из АПК и протоколов взаимодействия. Аппаратно-программный комплекс обеспечивает выполнение функций:

    преобразование данных, циркулирующих в АПК АСУ, в информационные модели, отображаемые на мониторах (СОИ - средства отображения информации);

    регенерация информационных моделей (ИМ);

    обеспечение диалогового взаимодействия человека с ТС АСУ;

    преобразование воздействий, поступающих от ЧО (человека-оператора), в данные, используемые системой управления;

    физическая реализация протоколов взаимодействия (согласование форматов данных, контроль ошибок и т.п.).

Назначение протоколов состоит в том, чтобы обеспечить механизм достоверной и надежной доставки сообщений между человеком-оператором и СОИ, а следовательно, между ЧО и системой управления. Протокол - это правило, определяющее взаимодействие, набор процедур обмена информацией между параллельно выполняемыми процессами в реальном масштабе времени. Эти процессы (функционирование АПК АСУ и оперативная деятельность субъекта управления) характеризуются, во-первых, отсутствием фиксированных временных соотношений между наступлением событий и, во-вторых, отсутствием взаимозависимости между событиями и действиями при их наступлении.

Функции протокола связаны с обменом сообщениями между этими процессами. Формат, содержание этих сообщений образуют логические характеристики протокола. Правила же выполнения процедур определяют те действия, которые выполняют процессы, совместно участвующие в реализации протокола. Набор этих правил является процедурной характеристикой протокола. Используя эти понятия, мы можем теперь формально определить протокол как совокупность логических и процедурных характеристик механизма связи между процессами. Логическое определение составляет синтаксис, а процедурное - семантику протокола.

Генерирование изображения с помощью АПК позволяет получать не только двумерные спроецированные на плоскость изображения, но и реализовать картинную трехмерную графику с использованием плоскостей и поверхностей второго порядка с передачей текстуры поверхности изображения.

В зависимости от вида воспроизводимого изображения следует выделить требования по алфавиту ИМ, по способу формирования символов и по разновидности использования элементов изображения. Используемый алфавит характеризует тип модели, её изобразительные возможности. Он определяется классом решаемых задач, задается числом и типом знаков, количеством градаций яркости, ориентацией символов, частотой мерцания изображения и др.

Алфавит должен обеспечивать построение любых информационных моделей в пределах отображаемого класса. Необходимо также стремиться к уменьшению избыточности алфавита.

Способы формирования знака классифицируются в соответствии с используемыми элементами изображения и делятся на моделирующие, синтезирующие и генерирующие. Для знака, который формируется на экране ЭЛТ, предподчительным является матричный формат.

Наблюдение за монитором позволяет пользователю построить изображение режима системы, которое формируется на основе обученности, тренировки и опыта (концептуальная модель), следовательно, возможно сравнение этого изображения с изображением теоретическим в соответствии с ситуацией. Требование адекватности , изоморфизма , сходства пространственно-временной структуры отображаемых объектов управления и окружающей среды определяет эффективность модели.Реферат >> Информатика

Поддержка сервисных функций, обеспечение дружественного интерфейса пользователя . 2.4. Решение по функциональному разбиению... среды разработки Inprise Delphi Client/Server Suite v. 4. 3.4.1. Входная и выходная информация Отличительными признаками данной АС ...

  • Разработка автоматизированной системы заполнения первичной документации предприятия

    Дипломная работа >> Информатика

    Системе. Автоматизированная система (АС ) – это человеко... различных действиях пользователя . Выбор среды разработки данной... Начиная с пятой версии в среде Delphi доступны и другие технологии, ... : Дружественный пользовательский интерфейс – необходимо организовать...

  • Разработка визуализатора для нахождения максимального потока в сети

    Курсовая работа >> Коммуникации и связь

    Систем управления предприятиями (АСУ ). АСУ включают несколько автоматизированных... метки, кнопки, которые поддерживают интерфейс пользователя с базой данных. Обеспечивает... изображений. Локальная версия среды разработки Delphi Desktop Edition, предназначен...

  • Разработка информационной системы (2)

    Реферат >> Информатика

    Производства, предприятия. АСУ применяются в... Среда Delphi включает в себя полный набор визуальных инструментов для скоростной разработки ... development), поддерживающей разработку пользовательского интерфейса и подключение... документов с пользователем и полного...

  • ВВЕДЕНИЕ

    Современные методы проектирования деятельности пользователей АСУ сложились в рамках системотехнической концепции проектирования, в силу чего учет человеческого фактора ограничился решением проблем согласования
    «входов» и «выходов» человека и машины. Вместе с тем при анализе неудовлетворенности пользователей АСУ удается выявить, что она часто объясняется отсутствием единого, комплексного подхода к проектированию систем взаимодействия.

    Использование системного подхода позволяет принять во внимание множество факторов самого различного характера, выделить из них те, которые оказывают самое большое влияние с точки зрения имеющихся общесистемных целей и критериев, и найти пути и методы эффективного воздействия на них.
    Системный подход основан на применении ряда основных понятий и положений, среди которых можно выделить понятия системы, подчиненности целей и критериев подсистем общесистемным целям и критериям и т.д. Системный подход позволяет рассматривать анализ и синтез различных по своей природе и сложности объектов с единой точки зрения, выявляя при этом важнейшие характерные черты функционирования системы и учитывая наиболее существенные для всей системы факторы. Значение системного подхода особенно велико при проектировании и эксплуатации таких систем, как автоматизированные системы управления (АСУ), которые по существу являются человеко-машинными системами, где человек выполняет роль субъекта управления.

    Системный подход при проектировании представляет собой комплексное, взаимосвязанное, пропорциональное рассмотрение всех факторов, путей и методов решения сложной многофакторной и многовариантной задачи проектирования интерфейса взаимодействия. В отличие от классического инженерно-технического проектирования при использовании системного подхода учитываются все факторы проектируемой системы - функциональные, психологические, социальные и даже эстетические.

    Автоматизация управления неизбежно влечет за собой осуществление системного подхода, так как она предполагает наличие саморегулирующейся системы, обладающей входами, выходами и механизмом управлением. Уже само понятие системы взаимодействия указывает на необходимость рассмотрения окружающей среды, в которой она должна функционировать. Таким образом, система взаимодействия должна рассматриваться как часть более обширной системы - АСУ реального времени, тогда как последняя - системы управляемой среды.

    В настоящее время можно считать доказанным, что главная задача проектирования интерфейса пользователя заключается не в том, чтобы рационально «вписать» человека в контур управления, а в том, чтобы, исходя из задач управления объектом, разработать систему взаимодействия двух равноправных партнеров (человек-оператор и аппаратно-программный комплекс
    АСУ), рационально управляющих объектом управления.
    ПРЕДМЕТНАЯ ОБЛАСТЬ

    Итак, очевидно, что человек-оператор является замыкающим звеном системы управления, т.е. субъектом управления, а АПК (аппаратно-программный комплекс) АСУ является инструментальным средством реализации его управленческой (оперативной) деятельности, т.е. объектом управления. По определению В.Ф.Венды, АСУ представляет собой гибридный интеллект, в котором оперативный (управленческий) состав и АПК АСУ являются равноправными партнерами при решении сложных задач управления.

    Рациональная организация труда операторов АРМ является одним из важнейших факторов, определяющих эффективное функционирование системы в целом. В подавляющем большинстве случаев управленческий труд - опосредованная деятельность человека, поскольку в условиях АСУ он ведет управление, «не видя» реального объекта. Между реальным объектом управления и человеком-оператором находится информационная модель объекта (средства отображения информации). Поэтому возникает проблема проектирования не только средств отображения информации, но и средств взаимодействия человека- оператора с техническими средствами АСУ, т.е. проблема проектирования системы, которую нам следует назвать интерфейс пользователя.

    Интерфейс взаимодействия человека с техническими средствами АСУ может быть структурно изображен (см. на рис.1.). Он состоит из АПК и протоколов взаимодействия. Аппаратно-программный комплекс обеспечивает выполнение функций:

    1. преобразование данных, циркулирующих в АПК АСУ, в информационные модели, отображаемые на мониторах (СОИ - средства отображения информации);

    2. регенерация информационных моделей (ИМ);

    3. обеспечение диалогового взаимодействия человека с ТС АСУ;

    4. преобразование воздействий, поступающих от ЧО (человека-оператора), в данные, используемые системой управления;

    5. физическая реализация протоколов взаимодействия (согласование форматов данных, контроль ошибок и т.п.).

    Назначение протоколов состоит в том, чтобы обеспечить механизм достоверной и надежной доставки сообщений между человеком-оператором и СОИ, а следовательно, между ЧО и системой управления. Протокол - это правило, определяющее взаимодействие, набор процедур обмена информацией между параллельно выполняемыми процессами в реальном масштабе времени. Эти процессы (функционирование АПК АСУ и оперативная деятельность субъекта управления) характеризуются, во-первых, отсутствием фиксированных временных соотношений между наступлением событий и, во-вторых, отсутствием взаимозависимости между событиями и действиями при их наступлении.

    Функции протокола связаны с обменом сообщениями между этими процессами. Формат, содержание этих сообщений образуют логические характеристики протокола. Правила же выполнения процедур определяют те действия, которые выполняют процессы, совместно участвующие в реализации протокола. Набор этих правил является процедурной характеристикой протокола. Используя эти понятия, мы можем теперь формально определить протокол как совокупность логических и процедурных характеристик механизма связи между процессами. Логическое определение составляет синтаксис, а процедурное - семантику протокола.

    Генерирование изображения с помощью АПК позволяет получать не только двумерные спроецированные на плоскость изображения, но и реализовать картинную трехмерную графику с использованием плоскостей и поверхностей второго порядка с передачей текстуры поверхности изображения.

    В зависимости от вида воспроизводимого изображения следует выделить требования по алфавиту ИМ, по способу формирования символов и по разновидности использования элементов изображения. Используемый алфавит характеризует тип модели, её изобразительные возможности. Он определяется классом решаемых задач, задается числом и типом знаков, количеством градаций яркости, ориентацией символов, частотой мерцания изображения и др.

    Алфавит должен обеспечивать построение любых информационных моделей в пределах отображаемого класса. Необходимо также стремиться к уменьшению избыточности алфавита.

    Способы формирования знака классифицируются в соответствии с используемыми элементами изображения и делятся на моделирующие, синтезирующие и генерирующие. Для знака, который формируется на экране ЭЛТ, предподчительным является матричный формат.

    Наблюдение за монитором позволяет пользователю построить изображение режима системы, которое формируется на основе обученности, тренировки и опыта (концептуальная модель), следовательно, возможно сравнение этого изображения с изображением теоретическим в соответствии с ситуацией.
    Требование адекватности, изоморфизма, сходства пространственно-временной структуры отображаемых объектов управления и окружающей среды определяет эффективность модели.

    Воспроизведение изображения осуществляется на основе его цифрового представления, которое содержится в блоке памяти, называемом буфером регенерации.

    Рис. 1. Информационно-логическая схема интерфейса взаимодействия.

    ИНФОРМАЦИОННАЯ МОДЕЛЬ: ВХОДНАЯ И ВЫХОДНАЯ ИНФОРМАЦИЯ

    Информационная модель, являясь для оператора источником информации, на основе которой он формирует образ реальной обстановки, как правило, включает большое количество элементов. Учитывая различный семантический характер используемых элементов, информационную модель можно представить как совокупность взаимосвязанных элементов:

    D ^ {Dn} , где Rj - множество элементов информационной модели j-й группы, n=1,...N; k=1,...K.

    Количество групп элементов информационной модели определяется степенью детализации описания состояний и условий функционирования объекта управления. Как правило, элемент информационной модели связан с каким-либо параметром объекта управления. Наряду с этим информационная модель графического типа может рассматриваться как сложное графическое изображение. Элементы информационной модели здесь выступают как элементы изображения. Любое изображение состоит из некоторого набора графических примитивов, представляющих собой произвольный графический элемент, обладающий геометрическими свойствами. В качестве примитивов могут выступать и литеры (алфавитно-цифровые и любые другие символы).

    Совокупность графических примитивов, которой оператор может манипулировать как единым целым, называют сегментом отображаемой информации. Наряду с сегментом часто используется понятие графический объект, под которым понимают множество примитивов, обладающих одинаковыми визуальными свойствами и статусом, а также идентифицированных одним именем.
    При организации процесса переработки информации в системах отображения будем манипулировать следующими понятиями:

    6. Статическая информация - относительно стабильная по содержанию информация, используемая в качестве фона. Например, координатная сетка, план, изображение местности и т.д.

    7. Динамическая информация - информация, переменная в определенном интервале времени по содержанию или положению на экране. Реально динамическая информация часто является функцией некоторых случайных параметров.

    Такое деление считается сильно условным. Несмотря на это, при проектировании реальных систем отображения информации решается без затруднений.

    При создании сложных АСУ велико значение разработки программного обеспечения, т.к. именно программные средства создают интеллект компьютера, решающий сложные научные задачи, управляющий сложнейшими технологическими процессами. В настоящее время при создании подобных систем значительно возрастает роль человеческого фактора, а следовательно, эргономического обеспечения системы. Основной задачей эргономического обеспечения является оптимизация взаимодействия между человеком и машиной не только в период эксплуатации, но и при изготовлении, и при утилизации технических компонентов. Итак, при систематизации подхода проектирования интерфейса пользователя, можно привести некоторые основные функциональные задачи и принципы построения, которые должен решать современный язык программирования и с которыми с успехом справляется Delphi:

    Принцип минимального рабочего усилия, имеющий два аспекта:

    8. минимизация затрат ресурсов со стороны разработчика ПО, что достигается путем создания определенной методики и технологии создания, свойственной обычным производственным процессам;

    9. минимизация затрат ресурсов со стороны пользователя, т.е. ЧО должен выполнять только ту работу, которая необходима и не может быть выполнена системой, не должно быть повторений уже сделанной работы и т.д.

    Задача максимального взаимопонимания. Т.е. ЧО не должен заниматься, например, поиском информации, или выдаваемая на экран информация не должна требовать перекодировки или дополнительной интерпретации пользователем.

    Пользователь должен запоминать как можно меньшее количество информации, так как это снижает свойство ЧО принимать оперативные решения.

    Принцип максимальной концентрации поьзователя на решаемой задачи и локализация сообщений об ошибках.
    ЧТО ПОНИМАТЬ ПОД ИНТЕРФЕЙСОМ

    Пользовательский интерфейс - это значит общение между человеком и компьютером. Общий Пользовательский Доступ - это правила, которые объясняют диалог в терминах общих элементов, таких как правила представления информации на экране, и правила интерактивной технологии такие, как правила реагирования человека-оператора на то, что представлено на экране. В данном курсовом проекте мы рассмотрим стандарт ОПД фирмы IBM разработанный совместно с компанией MICROSOFT для класса машин «РС-АТ».

    КОМПОНЕНТЫ ИНТЕРФЕЙСА

    На практическом уровне, интерфейс это набор стандартных приемов взаимодействия с техникой. На теоретическом уровне интерфейс имеет три основных компоненты:

    1. Способ общения машины с человеком-оператором.

    2. Способ общения человека-оператора с машиной.

    3. Способ пользовательского представления интерфейса.

    МАШИНА К ПОЛЬЗОВАТЕЛЮ

    Способ общения машины с пользователем (язык представления) определяется машинным приложением (прикладной программной системой).
    Приложение управляет доступом к информации, обработкой информации, представлением информации в виде понятном для пользователя.

    ПОЛЬЗОВАТЕЛЬ К МАШИНЕ

    Пользователь должен распознать информацию, которую представляет компьютер, понять (проанализировать) ее, и переходить к ответу. Ответ реализуется через интерактивную технологию, элементами которой могут быть такие действия как выбор объекта при помощи клавиши или мыши. Все это составляет вторую часть интерфейса, а именно язык действий.

    КАК ПОЛЬЗОВАТЕЛЬ ДУМАЕТ

    Пользователи могут иметь представление о машинном интерфейсе, что он делает и как им работать. Некоторые из этих представлений формируются у пользователей в результате опыта работы другими машинами, такими как печатающее устройство, калькулятор, видеоигры, а также компьютерная система. Хороший пользовательский интерфейс использует этот опыт. Более развитые представления формируются от опыта работы пользователей с самим интерфейсом. Интерфейс помогает пользователям развивать представления, которые могут в дальнейшем использоваться при работе с другими прикладными интерфейсами.

    СОГЛАСОВАННЫЙ ИНТЕРФЕЙС

    Ключ для создания эффективного интерфейса заключается в быстром, насколько это возможно, развитии у операторов простой концептуальной модели интерфейса. Общий Пользовательский Доступ осуществляет это через согласованность. Концепция согласованности состоит в том, что при работе с компьютером у пользователя формируется система ожидания одинаковых реакций на одинаковые действия, что постоянно подкрепляет пользовательскую модель интерфейса. Согласованность, обеспечивая диалог между компьютером и человеком-оператором, может снизить количество времени, требуемого пользователем как для того, чтобы изучить интерфейс, так и для того чтобы использовать его для выполнения работы.

    Согласованность является свойством интерфейса по усилению пользовательских представлений. Другой составляющей интерфейса является свойство его конкретности и наглядности. Это осуществляется применением плана панели, использованием цветов и другой выразительной техники. Идеи и концепции затем обретают физическое выражение на экране, с которым непосредственно общается пользователь.

    СОГЛАСОВАННОСТЬ - ТРИ РАЗМЕРНОСТИ:

    Говорить что интерфейс согласован - это все равно что говорить, что что-то есть больше чего-то. Мы вынуждены спросить: "Больше чем что?". Когда мы говорим, что интерфейс согласован, мы вынуждены спросить: "Согласован с чем?". Необходимо упомянуть некоторую размерность.

    Интерфейс может быть согласован с тремя широкими категориями или размерностями: физической, синтаксической и семантической.

    4. Физическая согласованность относится к аппаратному обеспечению: схемы клавиатуры, расположения клавиш, использованию мыши. Например, будет иметь место физическая согласованность для клавиши F3, если она всегда находиться в одном и том же месте независимо от использования системы. Аналогично, будет физически согласованным выбор кнопки на мышке, если она всегда будет располагаться под указательным пальцем.

    5. Синтаксическая согласованность относится к последовательности и порядку появления элементов на экране (язык представлений) и последовательности запросов действий требований (язык действий).

    Например: будет иметь место синтаксическая согласованность, если всегда размещать заголовок панели в центре и на верху панели.

    6. Семантическая согласованность относится к значению элементов, которые составляют интерфейс. Например, что означает "Выход"? Где пользователи делают "Выход" и что затем происходит?

    МЕЖСИСТЕМНАЯ СОГЛАСОВАННОСТЬ

    Общий Пользовательский Доступ содержит определения всех элементов и интерактивной технологии. Но эти определения могут быть выполнены по разному из-за технических возможностей специфических систем. Итак, общий интерфейс не может быть идентичным для всех систем.

    Согласованность составных систем является балансом между согласованностью физической, синтаксической, семантической и стремлением получить преимущества оптимальных возможностей системы.

    ПРЕИМУЩЕСТВА СОГЛАСОВАННОГО ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ

    Согласованный интерфейс приносит пользователям и разработчикам экономию времени и средств. Пользователи выигрывают от того, если им понадобится меньше времени, чтобы научиться использовать приложения, а затем при функционировании понадобится меньше времени для выполнения работы. Дополнительные выгоды для пользователя будут отражены в их отношении к приложениям.

    Согласованный интерфейс сокращает уровень ошибок пользователя, повышает чувство удовлетворенности от выполнения задачи и способствует тому, чтобы пользователь чувствовал себя более комфортно с системой.

    Согласованный пользовательский интерфейс приносит выгоды и разработчикам приложений, позволяя выделить общие блоки элементов для интерфейса через стандартизацию элементов интерфейса и интерактивной технологии. Эти строительные блоки могут позволить программистам создавать и изменять приложения более просто и быстро. Например, из-за того, что одна и также панель может быть использована во многих системах, разработчики приложений могут использовать одни и те же панели в различных проектах.

    Хотя пользовательский интерфейс устанавливает правила для элементов интерфейса и интерактивной технологии, он допускает довольно высокую степень гибкости. Например, для интерфейса определены пять типов панелей, но допускается, что могут быть использованы панели специфического применения. Общий Пользовательский Доступ рекомендует использование определенных панелей но, если это невозможно, то следует использовать специфические элементы определенных панелей.


    ИНТЕРФЕЙСА

    MS-Windows предоставляет пользователям оболочку графического интерфейса (GUI), которая обеспечивает стандартную среду пользователя и программиста. (GUI) предлагает более сложное и дружелюбное окружение пользователя, чем командно-управляемый интерфейс DOS. Работа в Windows основана на интуитивно понятных принципах. Вам легко переключиться с задачи на задачу и осуществлять обмен информацией между ними. Однако разработчики приложений традиционно сталкиваются с трудностями программирования, поскольку организация среды Windows является чрезвычайно сложной.

    Delphi - язык и среда программирования, относящаяся к классу RAD-
    (Rapid Application Development - «Средство быстрой разработки приложений») средств CASE - технологии. Delphi сделала разработку мощных приложений
    Windows быстрым процессом, доставляющим вам удовольствие. Приложения
    Windows, для создания которых требовалось большое количество человеческих усилий например в С++, теперь могут быть написаны одним человеком, использующим Delphi.

    Интерфейс Windows обеспечивает полное перенесение CASE-технологий в интегрированную систему поддержки работ по созданию прикладной системы на всех фазах жизненного цикла работы и проектирования системы.

    Delphi обладает широким набором возможностей, начиная от проектировщика форм и кончая поддержкой всех форматов популярных баз данных. Среда устраняет необходимость программировать такие компоненты
    Windows общего назначения, как метки, пиктограммы и даже диалоговые панели.
    Работая в Windows , вы неоднократно видели одинаковые «объекты» во многих разнообразных приложениях. Диалоговые панели (например Choose File и Save
    File) являются примерами многократно используемых компонентов, встроенных непосредственно в Delphi, который позволяет приспособить эти компоненты к имеющийся задаче, чтобы они работали именно так, как требуется создаваемому приложению. Также здесь имеются предварительно определенные визуальные и невизуальные объекты, включая кнопки, объекты с данными, меню и уже построенные диалоговые панели. С помощью этих объектов можно, например, обеспечить ввод данных просто несколькими нажатиями кнопок мыши, не прибегая к программированию. Это наглядная реализация применений CASE- технологий в современном программировании приложений. Та часть, которая непосредственно связана с программированием интерфейса пользователя системой получила название визуальное программирование

    Выгоды от проектирования АРМ в среде Windows с помощью Delphi:

    10. Устраняется необходимость в повторном вводе данных;

    11. Обеспечивается согласованность проекта и его реализации;

    12. Увеличивается производительность разработки и переносимость программ.

    Визуальное программирование как бы добавляет новое измерение при создании создании приложений, давая возможность изображать эти объекты на экране монитора до выполнения самой программы. Без визуального программирования процесс отображения требует написания фрагмента кода, создающего и настрающего объект «по месту». Увидеть закодированные объекты было возможно только в ходе исполнения программы. При таком подходе достижение того, чтобы объекты выглядели и вели себя заданным образом, становится утомительным процессом, который требует неоднократных исправлений программного кода с последующей прогонкой программы и наблюдения за тем, что в итоге получилось.

    Благодаря средствам визуальной разработки можно работать с объектами, держа их перед глазами и получая результаты практически сразу. Способность видеть объекты такими, какими они появляются в ходе исполнения программы, снимает необходимость проведения множества операций вручную, что характерно для работы в среде не обладающей визуальными средствами - вне зависимости от того, является она объектно-ориентированной или нет. После того, как объект помещен в форму среды визуального программирования, все его атрибуты сразу отображаются в виде кода, который соответствует объекту как единице, исполняемой в ходе работы программы.

    Размещение объектов в Delphi связано с более тесными отношениями между объектами и реальным программным кодом. Объекты помещаются в вашу форму, при этом код, отвечающий объектам, автоматически записывается в исходный файл. Этот код компилируется, обеспечивая существенно более высокую производительность, чем визуальная среда, которая интерпретирует информацию лишь в ходе исполнения программы.

    Три основные части разработки интерфейса следующие: проектирование панели, проектирование диалога и представление окон. Для Общего
    Пользовательского Доступа также должны учитываться условия применения
    Архитектуры Прикладных Систем. Существуют также другие условия: являются ли входные устройства на терминалах клавишными или указательными и будут ли являться приложения символьными или графическими.

    РАЗРАБОТКА ДИЗАЙНА ПАНЕЛИ

    Установим основные термины, относящиеся к разработке панели.

    Экран - это поверхность компьютерной рабочей станции или терминала, на которой располагается информация предназначенная для пользователя.
    Панель - это предопределенная группированная информация, которая структурирована специфическим способом и расположена на экране. Общий
    Пользовательский Доступ устанавливает пять панельных схем, называющихся панельными типами. Необходимо использовать различные панельные типы, чтобы представить различные виды информации. Пять панельных типов следующие:

    9. Информация;

    10. Список;

    11. Логическое.

    Можно также смешивать части этих панельных типов, чтобы создавать смешанные панели. Следует представлять каждую панель как некоторое пространство, разделенное на три основные части, каждая из которых содержит отдельный тип информации:

    12. Меню действий и нисходящее меню;

    13. Тело панели;

    14. Область функциональных клавиш.

    На рис. 2 представлено положение трех областей панели.
    |Меню действий |
    | |
    |Тело панели |
    | |
    |Область функциональных клавиш |

    Рис. 2. Три панельные области.

    Меню действий возникает на верху панели. Это дает пользователям доступ к группе действий, которые поддерживает приложение. Меню действий содержит в себе список выбора возможных действий. Когда пользователи делают выбор, в форме спускающегося меню появляется на экране список возможных действий. Спускающееся меню является расширением меню действий.

    Слово "действия" в "меню действий" не подразумевает, что все команды должны быть глаголами. Существительные также допустимы. Значение действия в термине "меню действий" происходит от того факта, что выбор элемента меню действий выполняется приложением через действия пользователей. Например, в текстовом редакторе выбор "Шрифты" меню действий является существительным и разрешает пользователю потребовать действий выбора шрифтов.

    Некоторые панели будут иметь меню действий, а другие нет.

    Меню действий и нисходящее меню обеспечивают два замечательных преимущества для пользователей.

    Первое преимущество состоит в том, что эти действия становятся для пользователей видимыми и могут быть затребованы на выполнение посредством простой интерактивной техники. "Запрос" означает инициацию действия.
    Способ, с помощью которого человек-оператор инициирует действие, состоит в нажатии функциональной клавиши, в выполнении выбора в нисходящем меню или печати (вводе) команды. Меню действий и нисходящее меню обеспечивают визуальность, что помогает пользователям находить требуемые действия без необходимости запоминания и печати имени действия.

    Второе преимущество заключается в том, что выбор в меню действий приводит к вызову нисходящего меню, т.е. они никогда не служат причиной немедленного действия. Пользователи видят, что реализация таких действий не приводит к неисправимым последствиям, и у них не возникает страх от неправильного действия.

    Меню действий и нисходящее меню обеспечивает двухуровневую иерархию действий. Вы можете обеспечить дополнительный уровень, используя всплывающие окна, которые появляются, когда оператором делается выбор в нисходящем меню. Затем, когда оператор делает выбор во всплывающем окне, может появиться серия всплывающих окон по мере выполнения действий. Общий
    Пользовательский Доступ рекомендует вам ограничить число уровней всплывающих окон до трех, поскольку многие пользователи испытывают трудности в понимании иерархии меню, имеющих много уровней.

    Тело панели находится под меню действий и над областью функциональных клавиш. Каждая панель, которую вы создаете, будет иметь тело, которое может быть разделено на несколько областей, если вашему приложению необходимо показать пользователям больше, чем одну группу информации одновременно, или пользователям разрешается вводить или обновлять более чем одну группу информации в один и тот же момент времени.

    Тело панели может содержать также командную область, в которой пользователи печатают прикладные или системные команды, и область сообщений, в которой сообщения появляются.

    Командная область является средством предоставления пользователям командного интерфейса, который является альтернативой запросам действиям через меню действий и нисходящее меню. Область сообщений дают вам место для размещения сообщений на экране, иное, чем для окон, так как важно, чтобы сообщения не сталкивались с информацией на панели или с запросом действием.

    Область функциональных клавиш располагается в нижней части панели и оператор может выбрать размещение ее в короткой или длинной форме или вообще не размещать. Она содержит список функциональных клавиш. Некоторые панели могут содержать как меню действий, так и заголовок функциональных клавиш. Необходимо обеспечить включение области функциональных клавиш для всех панелей, хотя пользователь может отказаться от их экранирования. См. рис. 3 где представлен общий вид панели пользователя системой.
    |Выбор Связи |
    |Выбрать один из следующих видов связи: |
    |1. Прием почты |
    |2. Прием сообщений |
    |3. Отправление почты |
    |4. Почтовый журнал |
    |5. Операции |
    |6. Почтовый статус |
    |Esc=Отмена |F1=Помощь |F3=Выход |

    Рис. 3. Панель с областью функциональных клавиш. Область функциональных клавиш экранирована в короткой форме и содержит выборы Отмена, Помощь и

    Панельные элементы являются наименьшими частями панельного дизайна.
    Некоторые элементы относяться исключительно к определенным областям панели, тогда как другие могут быть использованы в разных областях.

    Общий Пользовательский Доступ обеспечивает определенное количество символов и визуальных обозначений, таких как псевдокнопки и контактные кнопки, которые вы можете, применять для указания пользователям, с какими из полей выбора или действий они работают.

    ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ: ОБЪЕКТ - ДЕЙСТВИЕ

    Разбиение панели на области, которые содержат информационные объекты или выборы действий, основано на принципе объект-действие панельного дизайна. Этот принцип разрешает пользователям сначала сделать выбор объекта на теле панели, а затем выбрать соответсвующее действие для работы с выбранным объектом из меню действий или из области функциональных клавиш.

    Это объектно-действенное соответствие позволяет вам формировать из действия меню действий и нисходящие меню, включая в них только те, которые действительны для соответствующих объектов. Применение концепции объект- действия способствует минимизации числа режимов, большое число которых иногда доставляет пользователям неудобства и делает приложение сложным для изучения и использования. Принцип объект-действие предпочтительнее, но в большинстве случаев также может быть применена связь действие-объект, при которой оператор выбирает объекты и действия в обратном порядке.

    РАБОТА ПОЛЬЗОВАТЕЛЯ С ПАНЕЛЬЮ

    Пользователь работает с элементами панели с помощью курсора выбора, одной из форм выделения которого является цветовая полоска, используемая для высвечивания полей выбора и полей ввода. Курсор выбора показывает, где и с чем пользователь собирается работать. Пользователи передвигают курсор по панели с помощью клавиатуры или мышки.

    ПРЯМОЕ ВЗАИМОДЕЙСТВИЕ

    В Общий Пользовательский Доступ входят такие концепции дизайна как концепция пошаговой подсказки, визуальной реплики и интерактивной техники.
    Однако опытные пользователи могут и не потребовать такого уровня простоты в эксплуатации. Они могут потребовать более прямого взаимодействия с приложением. Для таких пользователей Общий Пользовательский Доступ также содержит быстрые интерактивные технологии, такие как:

    15. Назначение действиям функциональных клавиш.

    16. Ускоренный выход из действий высокого уровня.

    17. Использование мнемоники и номеров для выбора объектов и действий.

    18. Командная область позволяет пользователю войти в приложение и системные команды.

    19. Применение мышки ускоряет выбор действий.

    ПОСТРОЕНИЕ ДИАЛОГА

    Диалог - это последовательность запросов между пользователем и компьютером: запрос пользователя, ответ и запрос компьютера, окончательное действие компьютера.

    В то время как пользователь и компьютер обмениваются сообщениями, диалог под контролем оператора движется по одному из путей обеспечиваемых приложением. По существу, пользователь продвигается через приложение, используя конкретные действия, которые являются частью диалога. Эти диалоговые действия не обязательно требуют от компьютера обработки информации; они могут лишь послужить причиной перехода от одной панели к другой или от одного приложения к другому, если работает более чем одно приложение. Диалоговые действия также контролируют, что происходит с информацией, которую пользователи печатают на конкретной панели; следует ли ее сохранить или запомнить, когда пользователи решают перейти к другой панели приложения.

    Итак, диалог состоит из двух частей:

    Каждому шагу диалога сопутствует решение сохранять или не сохранять новую информацию.

    С помощью нескольких направлений хода диалога оператору предоставляется возможность альтернативного продвижения в своих решениях, включая такие общие диалоговые действия, как вход, отмена и выход. Общие диалоговые действия представляют собой набор таких действий, определенных в
    Общем Пользовательском Доступе, которые имеют общее значение во всех приложениях. С некоторыми из этих режимов пользователь может продвигаться:

    22. Вперед на один шаг (действие входа);

    23. Назад на один шаг (действие отмены);

    24. Назад на конкретную точку приложения (действие функционального выхода);

    25. Покинуть приложение (режим выхода из приложения).

    Действия входа и отмены, как шаги диалога, обычно представляют оператору новую панель или могут представлять ту же самую панель, но со значительными изменениями. В различных точках диалога действия снятия и выхода выполняются одинаково независимо от того, как много точек выхода имеет приложение. Некоторые приложения имеют только одну точку выхода, а другие несколько. Совокупность нескольких общих диалоговых действий иллюстрируется на рис. 4.

    Здесь иллюстрируются возможности навигации типичного диалога при переходах от панели к панели, которые изображены прямоугольниками. Операции
    Вперед и Назад являются операциями прокрутки, а не навигационными, и используются для передвижения внутри панелей.

    Рис. 4. Диалоговые действия.

    УДЕРЖАНИЕ И СОХРАНЕНИЕ ИНФОРМАЦИИ

    В то время как пользователи выполняют навигацию приложения, что-то должно происходить с информацией изменяемой на панели. Она может удерживаться на уровне панели или может быть сохранена.

    Удерживаемая информация принадлежит к информации на панельном уровне приложения. Когда пользователи возвращаются в диалог через отмену панели, приложение аннулирует или сохраняет любые изменения информации на панели.
    Удерживаемая информация может быть экранирована в виде значений по умолчанию, когда пользователь будет просматривать эту панель в следующий раз. Но это не значит, что информация будет сохранена. Каждое приложение решает удерживать или сохранять подобную информацию.

    Сохранение информации означает помещение ее в область памяти задаваемой оператором. Действия навигации, ведущие пользователя по приложению, не сохраняют информацию до тех пор, пока пользователь не укажет точно, что эти действия должны заканчиваться сохранением информации.

    Если действия пользователя могут привести к потере определенной информации, Общий Пользовательский Доступ рекомендует потребовать от пользователя подтверждения, что они не хотят сохранять информацию, или разрешить им сохранить информацию, или аннулировать последний запрос и вернуться на один шаг назад.

    Ваше приложение может работать в режиме окон. Это значит, что панель располагается в отдельных ограниченных частях экрана, которые называются окнами. Система, имеющая режим окон, разрешает пользователю делить экран на окна, содержащие свою собственную панель. Используя сразу несколько окон, пользователь может одновременно наблюдать на экране несколько панелей одного или разных приложений.

    Если экран содержит одно или два окна, пользователь может и не видеть всю панель целиком в каждом окне. Это зависит от размеров окна.
    Пользователь может подвинуть или изменить размер каждого окна, чтобы вместить необходимую ему информацию. Также, пользователи могут прокручивать содержание окон, перемещая информацию на панели внутри области экрана, ограниченной окном.

    Возможности режима окон обеспечиваются операционной системой или ее сервисными и инструментальными средствами, а иначе приложения сами должны реализовать этот режим.

    ТРИ ТИПА ОКОН

    Первичное окно- это окно, с которого пользователь и компьютер начинают свой диалог. Например, в текстовом редакторе, первичное окно содержит текст, подлежащий редактированию. В редакторе электронных таблиц, первичное окно содержит таблицу. В системах без возможности создания окон, следует считать весь экран первичным окном. Каждое первичное окно может содержать столько панелей, сколько необходимо, одну за другой, чтобы вести диалог. Пользователи могут переключать первичное окно на другое первичное или вторичное окно.

    Вторичные окна вызываются из первичных окон. Это такие окна, в которых пользователи и компьютер ведут диалог параллельно диалогу в первичном окне. Например, в текстовом редакторе, вторичное окно может содержать панель, с помощью которой пользователь изменяет формат документа, а в первичном окне содержится редактируемая информация. Вторичные окна также используются чтобы предоставлять вспомогательную информацию, которая относится к диалогу в первичных окнах. Пользователи могут переключаться с первичных окон на вторичные окна и наоборот. Первичные и вторичные окна имеют заглавные полосы в верхней части окна. Заголовок соотносится с окном через приложения.

    Всплывающие окна представляют собой участок экрана, в котором располагается экранируемая панель, которая расширяет диалог пользователя через первичные и вторичные окна. Всплывающие окна связываются с другими окнами и появляются, когда приложение желает расширить диалог с другим окном. Одно из применений всплывающих окна состоит в передаче различных сообщений. Перед тем как продолжить диалог с некоторым окном пользователь должен завершить свою работу со связанным с ним всплывающим окном.

    Устройства Ввода: клавиатура, мышка и другие

    Общий Пользовательский Доступ поддерживает согласованное использование клавиатуры и мышки, или любого другого устройства, действующего как мышка. Будем далее считать, что мышка является основным указывающим устройством.

    Пользователям следует быть готовыми переключаться между клавиатурой и мышкой практически на любой стадии диалога без необходимости изменения режимов приложения. Одно устройство может быть более эффективно, чем другое в известной ситуации, следовательно, пользовательский интерфейс позволяет дать пользователям возможность легко переключаться с одного устройства на другое.

    Все персональные компьютерные приложения, должны учитывать использование мышки. Однако приложения на непрограммируемых терминалах не могут поддерживать мышку. На этих терминалах поддержка мышки не обязательна.

    Поддержка Клавиатуры

    Примем за стандарт де-факто Общий Пользовательский Доступ, разработанный с учетом одного типа клавиатуры, а именно, расширенной клавиатуры фирмы IBM.

    Необходимо назначить функциям приложения клавиши согласно правилам и спецификациям стандарта IBM. Назначение клавиш относятся к клавиатуре IBM
    Enhanced Keyboard. Для клавиатур других типов используется соответствующая техническая документация, например, изменяемая клавиатура IBM Modifiable
    Keyboard.

    Правила назначения клавиш:

    26. В приложениях могут быть использованы любые клавиши, включая как клавиши, нажимаемые без Shift, а также сочетания с Shift+, Ctrl+ и

    Alt+, если программируемая рабочая станция или непрограммируемый терминал допускают доступ приложения к этим клавишам. Следует избегать использования каких-либо клавиш, назначенных операционной системой, под управлением которой будет выполняться приложение.

    27. Если приложение будет переведено на другие языки, не следует назначать сочетаниям алфавитно-цифровых клавиш с Alt. Однако, если это возможно, пользователи могут назначать этим клавишам различные функции.

    28. Для изменения исходного значения клавиш используйте их в сочетании с клавишами Alt, Ctrl и Shift. Клавиши Alt, Ctrl и Shift самостоятельно не используются.

    29. Не следует переназначать или дублировать назначение клавиш.

    30. Пользователям предоставляется возможность изменения назначения клавиш, как дополнительную функцию приложения. Пользователи должны иметь возможность назначить действия и параметры любым функциональным клавишам, а также изменять их обозначение на экране.

    31. Если некоторая функция назначена функциональной клавише одинаково в нескольких приложениях, то следует назначать этой клавише именно данную функцию во всех приложениях.

    32. Если пользователи нажимают неназначенную на уровне текущей панели клавишу, то никакого эффекта не должно быть, если не указано что-либо иное.
    ЗАКЛЮЧЕНИЕ

    В современных условиях поиск оптимального решения проблемы организации интерфейса взаимодействия приобретает характер комплексной задачи, решение которой существенно осложняется необходимостью оптимизации функционального взаимодействия операторов между собой и с техническими средствами АСУ в условиях изменяющегося характера их профессиональной деятельности.

    В этой связи хотелось бы подчеркнуть особую актуальность проблемы моделирования взаимодействия ЧО с техническими средствами АСУ. Сегодня появилась реальная возможность с помощью моделирования на современных многофункциональных средствах обработки и отображения информации таких как
    Delphi конкретизировать тип и характеристики используемых информационных моделей, выявить основные особенности будущей деятельности операторов, сформулировать требования к параметрам аппаратно-программных средств интерфейса взаимодействия и т.д.

    Говоря о проблемах взаимодействия человека с ТС АСУ и практической реализации интерфейса взаимодействия, нельзя опустить такой важный вопрос, как унификация и стандартизация. Использование типовых решений, модульного принципа проектирования систем отображения и обработки информации приобретает всё более широкие масштабы, что, впрочем, вполне естественно.

    Особый упор при внедрении данных задач следует конечно придавать современным CASE-средствам разработки прграмм, так как они наиболее оптимально позволяют проектировать решения в основе которых лежат, в первую очередь, требования к согласованному пользовательскому интерфейсу, каковым и является интерфейс Windows. Никакие продукты других фирм, доступные сегодня, не обеспечивают одновременную простоту использования, производительность и гибкость в такой степени, как Delphi. Этот язык заполнил брешь между языками 3-го и 4-го поколений, соединив их сильные стороны и создав мощную и производительную среду разработки.

    ЛИТЕРАТУРА

    Организация взаимодействия человека с техническими средствами АСУ, том 4:
    «Отображение информации», редакция В.Н.Четверикова, Москва, «Высшая Школа»
    1993.
    Организация взаимодействия человека с техническими средствами АСУ, том 7:
    «Системное проектирование взаимодействия человека с техническими средствами», редакция В.Н.Четверикова, Москва, «Высшая Школа» 1993.
    «Кибернетические диалоговые системы», И.П.Кузнецов.
    «Рекоммендации по общепользовательскому интерфейсу», Microsoft, редакция
    1995г.
    Джон Матчо, Дэвид Р.Фолкнер. «Delphi» - пер. с англ. - М.:Бином, 1995г.

    ВВЕДЕНИЕ 2

    ПРЕДМЕТНАЯ ОБЛАСТЬ 3

    ИНФОРМАЦИОННАЯ МОДЕЛЬ: ВХОДНАЯ И ВЫХОДНАЯ ИНФОРМАЦИЯ 6

    ФУНКЦИОНАЛЬНЫЕ ЗАДАЧИ, КОТОРЫЕ РЕШАЕТ DELPHI ПРИ КОНСТРУИРОВАНИИ ИНТЕРФЕЙСА
    7

    ЧТО ПОНИМАТЬ ПОД ИНТЕРФЕЙСОМ 8

    КОМПОНЕНТЫ ИНТЕРФЕЙСА 8

    МАШИНА К ПОЛЬЗОВАТЕЛЮ 8

    ПОЛЬЗОВАТЕЛЬ К МАШИНЕ 8

    КАК ПОЛЬЗОВАТЕЛЬ ДУМАЕТ 8
    СОГЛАСОВАННЫЙ ИНТЕРФЕЙС 9

    СОГЛАСОВАННОСТЬ - ТРИ РАЗМЕРНОСТИ: 9

    МЕЖСИСТЕМНАЯ СОГЛАСОВАННОСТЬ 10

    ПРЕИМУЩЕСТВА СОГЛАСОВАННОГО ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ 10

    ПРОГРАММНО-ТЕХНИЧЕСКИЕ СРЕДСТВА: РЕАЛИЗАЦИЯ И СОЗДАНИЕ ПОЛЬЗОВАТЕЛЬСКОГО
    ИНТЕРФЕЙСА 11

    РАЗРАБОТКА ДИЗАЙНА ПАНЕЛИ 13
    ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ: ОБЪЕКТ - ДЕЙСТВИЕ 16

    РАБОТА ПОЛЬЗОВАТЕЛЯ С ПАНЕЛЬЮ 16

    ПРЯМОЕ ВЗАИМОДЕЙСТВИЕ 16

    ПОСТРОЕНИЕ ДИАЛОГА 16
    УДЕРЖАНИЕ И СОХРАНЕНИЕ ИНФОРМАЦИИ 19
    ОКНА 19

    ТРИ ТИПА ОКОН 20
    УСТРОЙСТВА ВВОДА: КЛАВИАТУРА, МЫШКА И ДРУГИЕ 20

    ПОДДЕРЖКА КЛАВИАТУРЫ 21

    Протоколы связи в АСУ ТП

    В современных системах автоматизации, в результате постоянной модернизации производства, все чаще встречаются задачи построения распределенных промышленных сетей с использованием гибких протоколов передачи данных.


    Прошли те времена, когда где-нибудь в аппаратной ставился огромный шкаф с оборудованием, к нему тянулись километры толстых пучков кабелей, ведущих к датчикам и исполнительным механизмам. Сегодня, в подавляющем большинстве случаев, на много выгоднее установить несколько локальных контроллеров, объединенных в единую сеть, тем самым сэкономив на установке, тестировании, вводе в эксплуатацию и техническом обслуживании по сравнению с централизованной системой.


    Для организации промышленных сетей используется множество интерфейсов и протоколов передачи данных, например Modbus, Ethernet, CAN, HART, PROFIBUS и пр. Они необходимы для передачи данных между датчиками, контроллерами и исполнительными механизмами (ИМ); калибровки датчиков; питания датчиков и ИМ; связи нижнего и верхнего уровней АСУ ТП. Протоколы разрабатываются с учетом особенностей производства и технических систем, обеспечивая надежное соединение и высокую точность передачи данных между различными устройствами. Наряду с надежностью работы в жестких условиях все более важными требованиями в системах АСУ ТП становятся функциональные возможности, гибкость в построении, простота интеграции и обслуживания, соответствие промышленным стандартам.


    Наиболее распространённой системой классификации сетевых протоколов является теоретическая модель OSI (базовая эталонная модель взаимодействия открытых систем, англ. Open Systems Interconnection Basic Reference Model ). Спецификация этой модели была окончательно принята в 1984 году Международной Организацией по Стандартизации (ISO). В соответствии с моделью OSI протоколы делятся на 7 уровней, расположенных друг над другом, по своему назначению — от физического (формирование и распознавание электрических или других сигналов) до прикладного (API для передачи информации приложениями). Взаимодействие между уровнями может осуществляться, как вертикально, так и горизонтально (Рис. 1). В горизонтальном взаимодействии программам требуется общий протокол для обмена данными. В вертикальном - посредством интерфейсов.


    Рис. 1. Теоретическая модель OSI.


    Прикладной уровень

    Прикладной уровень - уровень приложений (англ. Application layer ). Обеспечивает взаимодействие сети и приложений пользователя, выходящих за рамки модели OSI. На этом уровне используются следующие протоколы: HTTP, gopher, Telnet, DNS, SMTP, SNMP, CMIP, FTP, TFTP, SSH, IRC, AIM, NFS, NNTP, NTP, SNTP, XMPP, FTAM, APPC, X.400, X.500, AFP, LDAP, SIP, ITMS, Modbus TCP, BACnet IP, IMAP, POP3, SMB, MFTP, BitTorrent, eD2k, PROFIBUS.


    Представительский уровень

    Представительский уровень (англ. Presentation layer ) - уровень представления данных. На этом уровне может осуществляться преобразование протоколов и сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально. Запросы приложений, полученные с уровня приложений, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. К этому уровню традиционно относят следующие протоколы: HTTP, ASN.1, XML-RPC, TDI, XDR, SNMP, FTP, Telnet, SMTP, NCP, AFP.


    Сеансовый уровень

    Сеансовый уровень (англ. Session layer ) управляет созданием/завершением сеанса связи, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия. Используемые протоколы: ASP, ADSP, DLC, Named Pipes, NBT, NetBIOS, NWLink, Printer Access Protocol, Zone Information Protocol, SSL, TLS, SOCKS.


    Транспортный уровень

    Транспортный уровень (англ. Transport layer ) организует доставку данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. Разделяет данные на фрагменты равной величины, объединяя короткие и разбивая длинные (размер фрагмента зависит от используемого протокола). Используемые протоколы: TCP, UDP, NetBEUI, AEP, ATP, IL, NBP, RTMP, SMB, SPX, SCTP, DCCP, RTP, TFTP.


    Сетевой уровень

    Сетевой уровень (англ. Network layer ) определяет пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, за определение кратчайших маршрутов, коммутацию и маршрутизацию, за отслеживание неполадок и заторов в сети. Используемые протоколы: IP, IPv6, ICMP, IGMP, IPX, NWLink, NetBEUI, DDP, IPSec, ARP, RARP, DHCP, BootP, SKIP, RIP.


    Канальный уровень

    Канальный уровень (англ. Data link layer ) предназначен для обеспечения взаимодействия сетей на физическом уровне. Полученные с физического уровня данные проверяет на ошибки, если нужно исправляет, упаковывает во фреймы, проверяет на целостность, и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями. Спецификация IEEE 802 разделяет этот уровень на 2 подуровня — MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня. Используемые протоколы: STP, ARCnet, ATM, DTM, SLIP, SMDS, Ethernet, FDDI, Frame Relay, LocalTalk, Token ring, StarLan, L2F, L2TP, PPTP, PPP, PPPoE, PROFIBUS.


    Физический уровень

    Физический уровень (англ. Physical layer ) предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Используемые протоколы: RS-232, RS-422, RS-423, RS-449, RS-485, ITU-T, xDSL, ISDN, T1, E1, 10BASE-T, 10BASE2, 10BASE5, 100BASE-T, 1000BASE-T, 1000BASE-TX, 1000BASE-SX.


    Как вы могли заметить, многие протоколы упоминаются сразу на нескольких уровнях. Это говорит о недоработанности и отдаленности теоретической модели от реальных сетевых протоколов, поэтому привязка некоторых из них к уровням OSI является условной.


    В мировой практике, среди сетей общего применения, наиболее широко распространен протокол HTTP (англ. HyperText Transfer Protocol — «протокол передачи гипертекста» ). Относится к прикладному и представительскому уровням теоретической модели OSI. HTTP базируется на технологии «клиент-сервер», то есть существует потребитель (клиент), который инициирует соединение и посылает запрос, и поставщик (сервер), который ожидает соединения для получения запроса, производит необходимые действия и возвращает обратно сообщение с результатом. Основным типом НТТР-клиента является браузер, например Mozilla Firefox, Opera или Microsoft Internet Explorer. HTTP в настоящее время повсеместно используется во Всемирной паутине для получения информации с веб-сайтов.


    Рис. 2. Технология клиент сервер.


    На базе HTTP разработаны расширенные протоколы: HTTPS (англ. Hypertext Transfer Protocol Secure ), поддерживающий шифрование, и HTTP-NG (англ. HTTP Next Generation ), увеличивающий быстродействие Web и расширяющий возможности промышленного применения.


    Положительные стороны: простота разработки клиентских приложений, возможность расширения протокола путем добавления собственных заголовков, распространенность протокола.


    Отрицательные стороны: большой размер сообщений, по сравнению с двоичными данными, отсутствие навигации в ресурсах сервера, невозможность использования распределенных вычислений.


    создание удаленных диспетчерских пунктов, Web-приложения для SCADA систем, программное обеспечение промышленных контроллеров, организация видеонаблюдения.


    На сегодняшний день протокол HTTP и его модификации поддерживаются оборудованием и программным обеспечением большинства производителей. Рассмотрим некоторые из них.


    В оборудовании компании Korenix серий JetNet, JetRock, JetPort, JetI/O, JetBox (построение сетей на базе промышленного Ethernet), JetWave (беспроводные решения) протоколы семейства HTTP используются для организации доступа, конфигурирования и управления устройствами.


    Компания ICPDAS для работы с протоколом HTTP предлагает следующее оборудование и программное обеспечение. Контроллеры серии ХРАК, WinPAC, WinCon, LinPAC, ViewPAC работают под управлением операционных систем Windows и Linux, с встроенным HTTP-сервером. Программные пакеты InduSoft (SCADA), ISaGRAF, Web HMI, VXCOMM, MiniOS7 Studio, также используют HTTP-сервер для связи и взаимодействия с устройствами.


    Управляемые коммутаторы, встраиваемые компьютеры, оборудование промышленных беспроводных сетей, производства компании Моха, не обходятся без использования протоколов семейства HTTP.


    Рис. 3. Совместимость протоколов семейства Modbus.


    Для организации взаимодействия между элементами автоматизации в промышленных сетях передачи данных широко применяется коммуникационный протокол Modbus. Существуют три основные реализации протокола Modbus, две для передачи данных по последовательным линиям связи, как медным EIA/TIA-232-E (RS-232), EIA-422, EIA/TIA-485-A (RS-485), так и оптическим и радио: Modbus RTU и Modbus ASCII, и для передачи данных по сетям Ethernet поверх TCP/IP: Modbus TCP.


    Различие между протоколами Modbus ASCII и Modbus RTU заключается в способе кодирования символов. В режиме ASCII данные кодируются при помощи таблицы ASCII, где каждому символу соответствует два байта данных. В режиме RTU данные передаются в виде 8-ми разрядных двоичных символов, что обеспечивает более высокую скорость передачи данных. ASCII допускает задержку до 1 секунды в отличии от RTU, где сообщения должны быть непрерывны. Также режим ASCII имеет упрощенную систему декодирования и управления данными.


    Протоколы семейства Modbus (Modbus ASCII, Modbus RTU и Modbus TCP/IP) используют один прикладной протокол, что позволяет обеспечить их совместимость. Максимальное количество сетевых узлов в сети Modbus - 31. Протяженность линий связи и скорость передачи данных зависит от физической реализации интерфейса. Элементы сети Modbus взаимодействуют, используя клиент-серверную модель, основанную на транзакциях, состоящих из запроса и ответа.


    Обычно в сети есть только один клиент, так называемое, «главное» (англ. master) устройство, и несколько серверов — «подчиненных» (slaves) устройств. Главное устройство инициирует транзакции (передаёт запросы). Подчиненные устройства передают запрашиваемые главным устройством данные, или производят запрашиваемые действия. Главный может адресоваться индивидуально к подчиненному или инициировать передачу широковещательного сообщения для всех подчиненных устройств. Подчиненное устройство формирует сообщение и возвращает его в ответ на запрос, адресованный именно ему.


    Области промышленного применения:


    Простота применения протоколов семейства Modbus в промышленности обусловило его широкое распространение. На сегодняшний день, оборудование практически всех производителей поддерживает протоколы Modbus.


    Компания ICPDAS предлагает широкий спектр коммуникационного оборудования для организации сетей на базе протоколов семейства Modbus: серия I-7000 (шлюзы DeviceNet, серверы Modbus, адресуемые коммуникационные контроллеры); программируемые контроллеры серий ХРАК, WinPAC, WinCon, LinPAC, ViewPAC.


    Операторские панели производства компании Weintek, частотные преобразователи Control Techniques для связи с контроллерами также используют протокол Modbus.


    Традиционно протоколы семейства Modbus поддерживаются OPC серверами SCADA систем (Clear SCADA, компании Control Microsystems, InTouch Wonderware, TRACE MODE)для связи с элементами управления (контроллерами, ЧРП, регуляторами и др.).


    Рис. 4. Сеть Profibus.


    В Европе широкое распространение получила открытая промышленная сеть PROFIBUS (PROcess FIeld BUS). Изначально, прототип этой сети был разработан компанией Siemens для своих промышленных контроллеров.


    PROFIBUS объединяет технологические и функциональные особенности последовательной связи полевого уровня. Она позволяет объединять разрозненные устройства автоматизации в единую систему на уровне датчиков и приводов. Сеть PROFIBUS основывается на нескольких стандартах и протоколах, использует обмен данными между ведущим и ведомыми устройствами (протоколы DP и PA) или между несколькими ведущими устройствами (протоколы FDL и FMS).


    Сеть PROFIBUS можно ассоциировать с тремя уровнями модели OSI: физический, канальный и уровень приложений.


    Единым протоколом для доступа к шине для всех версий PROFIBUS является реализованный на втором уровне модели OSI протокол PROFIBUS-FDL. Данный протокол использует процедуру доступа с помощью маркера (token). Так же, как и сети на базе протоколов Modbus, сеть PROFIBUS состоит из ведущих (master) и ведомых (slave) устройств. Ведущее устройство может управлять шиной. Когда у ведущего (master) устройства есть право доступа к шине, оно может передавать сообщения без удаленного запроса. Ведомые устройства - это обычные периферийные устройства, не имеют прав доступа к шине, то есть они могут только подтверждать принимаемые сообщения или передавать сообщения ведущему устройству по его запросу. В минимальной конфигурации сеть может состоять либо из двух ведущих, либо из одного ведущего и одного ведомого устройства.


    Одни и те же каналы связи сети PROFIBUS допускают одновременное использование нескольких протоколов передачи данных. Рассмотрим каждый из них.


    PROFIBUS DP (Decentralized Peripheral - Распределенная периферия) — протокол, ориентированный на обеспечение скоростного обмена данными между ведущими DP-устройствами и устройствами распределённого ввода-вывода. Протокол характеризуется минимальным временем реакции и высокой стойкостью к воздействию внешних электромагнитных полей. Оптимизирован для высокоскоростных и недорогих систем.


    PROFIBUS PA (Process Automation - Автоматизация процесса) — протокол обмена данными с оборудованием полевого уровня, расположенным в обычных или взрывоопасных зонах. Протокол позволяет подключать датчики и приводы на одну линейную шину или кольцевую шину.


    PROFIBUS FMS (Fieldbus Message Specification - Спецификация сообщений полевого уровня) - универсальный протокол для решения задач по обмену данными между интеллектуальными сетевыми устройствами (контроллерами, компьютерами/программаторами, системами человеко-машинного интерфейса) на полевом уровне. Некоторый аналог промышленного Ethernet, обычно используется для высокоскоростной связи между контроллерами и компьютерами верхнего уровня.


    Все протоколы используют одинаковые технологии передачи данных и общий метод доступа к шине, поэтому они могут функционировать на одной шине.


    Положительные стороны: открытость, независимость от поставщика, распространенность.


    Области промышленного применения: организация связи датчиков и исполнительных механизмов с контроллером, связь контроллеров и управляющих компьютеров, связь с датчиками, контроллерами и корпоративными сетями, в SCADA системах.


    Основную массу оборудования использующего протокол PROFIBUS составляет оборудование компании SIEMENS. Но в последнее время этот протокол получил применение у большинства производителей. Во многом это обусловлено распространенностью систем управления на базе контроллеров Siemens.


    Рис. 5. Сеть Profibus на базе оборудования ICP DAS.


    Компания ICPDAS для реализации проектов на базе PROFIBUS предлагает ряд ведомых устройств: шлюзы PROFIBUS/Modbus серии GW, преобразователи PROFIBUS в RS-232/485/422 серии I-7000, модули и каркасы удаленного ввода/вывода PROFIBUS серии PROFI-8000. В настоящие время инженерами компании ICPDAS ведутся интенсивные разработки в области создания PROFIBUS ведущего устройства.

    Для последовательной передачи цифровых данных существует три формы связи:

    А) симплексная связь предполагает наличие одного передатчика и одного приемника; информация передается в одном направлении, связь осуществляется через отдельную пару проводов;

    Б) полудуплексная связь допускает двунаправленную передачу данных, но не одновременно; связь осуществляется по кабелю, состоящему из двух или четырех проводов;

    В) дуплексная связь обеспечивает одновременную двунаправленную передачу данных, а связь осуществляется также по кабелю, состоящему из двух или четырех проводов.

    Для каждой из указанных выше форм связи необходимо, чтобы приемное устройство было готово принять и идентифицировать каждый набор данных, переданный передатчиком. Существуют два способа решения этой задачи. При асинхронной передаче каждому пакету данных предшествует старт-бит , а по окончании передачи этого пакета данных следует стоп-бит . Таким образом, приемник четко определяет начало и конец сообщения. Однако из-за необходимости постоянной проверки старт- и стоп-битов скорость передачи при данном виде связи ограничена и, как правило, не превышает 1200 бит/с.

    Асинхронная передача используется в условиях неуверенного приема и высокого уровня помех. Синхронная передача не требует старт- и стоп-битов, передатчик и приемник синхронизированы . Начало приема-передачи данных предварительно синхронизируется синхроимпульсом, а затем каждое слово пакета данных распознается как блок из семи или восьми бит. Синхронная передача данных может обеспечивать скорость более 1200 бит/с и наиболее часто применяется для передачи таких потоков данных, как программные файлы.

    Современные интеллектуальные датчики и элементы управления наряду с традиционным интерфейсом RS-232C могут иметь также в своем составе подсистему последовательного ввода-вывода на базе интерфейса RS-485 . Программируемые логические контроллеры большинства производителей в качестве средств организации территориально-распределенных систем сбора данных и управления содержат ту или иную реализацию интерфейсов RS-422А/RS-485 .



    RS-232C – широко распространенный стандартный последовательный интерфейс. Он может быть использован для синхронной передачи данных со скоростью до 20 000 бит/с на расстояние до 15 метров; на более длинные дистанции скорость передачи уменьшается. интерфейс RS-449 – это более поздний стандарт, он обладает улучшенными по сравнению с RS-232 характеристиками по скорости и расстоянию передачи; здесь достижима скорость до 10 000 бит/с на расстояние до 1 км. Уровни напряжения, соответствующие стандарту RS-232, составляют +12 В для логического “0“ и –12 В для логической “1“. интерфейс RS-232 является в настоящее время стандартным для СОМ -портов персональных компьютеров. Поскольку подавляющее большинство микропроцессоров построено на ТТЛ -структуре (транзисторно-транзисторная логика), где уровень логического нуля составляет 0 В, а логической единицы +5 В, то, очевидно, что уровни сигналов необходимо преобразовывать для согласования. Последнее достигается использованием интегральных микросхем – преобразователей уровня, таких как: МС1488 для преобразования ТТЛ-уровней в уровни RS-232 и МС1489 для преобразования уровней RS-232 в ТТЛ-уровни.

    Интерфейс RS-485 (EIA–485 ) – один из наиболее распространенных стандартов физического уровня связи (канал связи + способ передачи сигнала).

    Сеть, построенная на интерфейсе RS-485, представляет собой приемопередатчики, соединенные при помощи витой пары – двух скрученных проводов. В основе интерфейса RS-485 лежит принцип дифференциальной (балансной ) передачи данных. Суть его заключается в передаче одного сигнала по двум проводам. Причем по одному проводу (условно A ) идет оригинальный сигнал, а по другому (условно B ) – его инверсная копия. Таким образом, между двумя проводами витой пары всегда есть разность потенциалов (рис. А1.1).

    Рисунок А1.1

    Такой способ передачи обеспечивает высокую устойчивость к синфазной помехе, действующей на оба провода линии одинаково. Если сигнал передается потенциалом в одном проводе относительно общего, как в RS-232, то наводки на этот провод могут исказить сигнал относительно хорошо поглощающего наводки общего («земли»). Кроме того, на сопротивлении длинного общего провода будет падать разность потенциалов общих точек как дополнительный источник искажений. При дифференциальной передаче таких искажений не происходит, поскольку в витой паре наводка на оба провода одинакова. Таким образом, потенциал в одинаково нагруженных проводах изменяется одинаково, при этом информативная разность потенциалов остается без изменений.

    Аппаратная реализация интерфейса – микросхемы приемопередатчиков с дифференциальными входами/выходами (к линии) и цифровыми портами (к портам UART-контроллера). Существуют два варианта такого интерфейса: RS-422 и RS-485 .

    RS-422 – дуплексный интерфейс. Прием и передача обеспечиваются по двум отдельным парам проводов. На каждой паре проводов может быть только по одному передатчику.

    RS-485 – полудуплексный магистральный аналог интерфейса RS-422. Прием и передача выполняются по одной паре проводов с разделением во времени. В сети может быть много передатчиков, так как они могут отключаться в режиме приема.

    Все устройства подключаются к одной витой паре одинаково: прямые выходы (A ) к одному проводу, инверсные (B ) - к другому.

    Входное сопротивление приемника со стороны линии обычно составляет 12 кОм. Поскольку мощность передатчика не беспредельна, это создает ограничение на количество приемников, подключенных к линии. Согласно стандарта RS-485, c учетом согласующих резисторов, передатчик может вести до 32 приемников. Однако, применяя микросхемы с повышенным входным сопротивлением, можно подключать к линии значительно большее количество устройств (более 100 приборов). При этом приборы подключаются к линии параллельно, а контроллер (компьютер) должен быть снабжен дополнительным устройством – преобразователем последовательного порта RS-485/ RS-232 .

    Максимальная скорость связи в RS-485 может достигать 10 Мбит/сек, а максимальная длина линии связи – 1200 м. Если необходимо организовать связь на расстоянии, превышающем 1200 м, или подключить большее число устройств, нежели допускает нагрузочная способность передатчика, то применяют специальные повторители (репитеры ).

    Диапазон напряжений логических “1“ и “0“ в передатчика RS-485 составляют, соответственно, +1,5...+6 В и –1,5...–6 В, а диапазон синфазного напряжения передатчика – (–1...+3 В).

    Значения параметров определены таким образом, что любое устройство, входящее в состав измерительной информационной системы, сохраняет работоспособность при наличии на его клеммах, подключенных к линии связи, помехи общего вида, напряжение которой находится в диапазоне от –7 до +7 В.

    Для параллельной передачи данных в измерительных информационных системах часто используется стандартный интерфейс IEEE-488 (Institute of Electrical and Electronics Engineers ), называемый также HP-IB (Hewlett-Packard Interface Bus) или GPIB (General Purpose Interface Bus – интерфейсная шина общего применения). Международная электротехническая комиссия (МЭК ) рекомендовала данный стандарт в качестве международного, по этой причине на постсоветском пространстве он носит название цифрового интерфейса МЭК.

    интерфейс IEEE-488 был разработан для программируемых и непрограммируемых электронных измерительных приборов и преобразователей. Он рассчитан на асинхронный обмен информацией, ориентирован на сопряжение устройств, располагаемых относительно друг друга на расстоянии до 20 м, и обеспечивает работу в ИИС приборов различной сложности, допускает прямой обмен информацией между ними, дистанционное и местное управление приборами. Описываемый интерфейс имеет магистральную структуру (рис. А1.2).

    Магистраль интерфейса состоит из 24 сигнальных линий, восемь из которых – линии заземления, а остальные линии разбиты на три группы. Первая группа, состоящая из восьми двунаправленных сигнальных линий, является шиной данных . Она предназначена для передачи данных и команд между различными приборами, присоединенными к интерфейсу. Другая группа из пяти сигнальных линий – шина общего управления , по ней передаются сигналы управления и состояния. Последняя группа из трех линий используется для управления передачей данных (шина квитирования ).


    Приборы, подсоединенные к интерфейсу, могут работать как приемники либо источники сообщений. В каждый момент времени только одно устройство может быть источником информации, тогда как приемниками сообщений могут работать одновременно несколько устройств. Одно из устройств на магистрали является контроллером интерфейса.

    Общее количество приемников и источников информации в IEEE-488 не должно превышать 31 при однобайтовой адресации, а число параллельно подключаемых приборов – 15 (включая управляющий контроллер).

    В стандарте IEEE-488 высокому уровню сигнала в линии соответствует значение напряжения, равное или больше 2 В, а низкому уровню – значение, равное или меньше 0,8 В.

    Приложение А2