Минор и алгебраическое дополнение. Как вычислить определитель (детерминант) матрицы? Минор и алгебраическое дополнение Формула алгебраического дополнения матрицы

    Алгебраическое дополнение - понятие матричной алгебры; применительно к элементу aij квадратной матрицы А образуется путем умножения минора элемента aij на (1)i+j; обозначается Аij: Aij=(1)i+jMij, где Mij минор элемента aij матрицы A=, т.е. определитель… … Экономико-математический словарь

    алгебраическое дополнение - Понятие матричной алгебры; применительно к элементу aij квадратной матрицы А образуется путем умножения минора элемента aij на (1)i+j; обозначается Аij: Aij=(1)i+jMij, где Mij минор элемента aij матрицы A=, т.е. определитель матрицы,… … Справочник технического переводчика

    См. в ст. Определитель … Большая советская энциклопедия

    Для минора М число, равное где М минор порядка k, расположенный в строках с номерами и столбцах с номерами некоторой квадратной матрицы Апорядка п; определитель матрицы порядка n k, полученной из матрицы Авычеркиванием строк и столбцов минора М;… … Математическая энциклопедия

    В Викисловаре есть статья «дополнение» Дополнение может означать … Википедия

    Операция, к рая ставит в соответствие подмножеству Мданного множества Xдругое подмножество так, что если известны Ми N, то тем или иным способом может быть восстановлено множество X. В зависимости от того, какой структурой наделено множество X,… … Математическая энциклопедия

    Или детерминант, в математике запись чисел в виде квадратной таблицы, в соответствие которой ставится другое число (значение определителя). Очень часто под понятием определитель имеют в виду как значение определителя, так и форму его записи.… … Энциклопедия Кольера

    О теореме из теории вероятностей см. статью Локальная теорема Муавра Лапласа. Теорема Лапласа одна из теорем линейной алгебры. Названа в честь французского математика Пьера Симона Лапласа (1749 1827), которому приписывают формулирование… … Википедия

    - (Laplacian matrix) одно из представлений графа с помощью матрицы. Матрица Кирхгофа используется для подсчета остовных деревьев данного графа (матричная теорема о деревьях), а также используется в спектральной теории графов. Содержание 1… … Википедия

    Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера

Книги

  • Дискретная математика , А. В. Чашкин. 352 стр. Учебник состоит из 17 глав по основным разделам дискретной математики: комбинаторному анализу, теории графов, булевым функциям, сложности вычисления и теории кодирования. Содержит…

Миноры матрицы

Пусть дана квадратная матрица А, n - ого порядка. Минором некоторого элемента а ij , определителя матрицы n - ого порядка называется определитель (n - 1) - ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент а ij . Обозначается М ij .

Рассмотрим на примере определителя матрицы 3 - его порядка:

Тогда согласно определению минора , минором М 12 , соответствующим элементу а 12 , будет определитель :

При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 - его порядка будет выглядеть так:

Знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента а ij называется его минор , взятый со знаком "+", если сумма (i + j) четное число, и со знаком "-", если эта сумма нечетное число. Обозначается А ij . А ij = (-1) i+j × М ij .

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример:

4. Обратная матрица и её вычисление.

Пусть А - квадратная матрица n - ого порядка.

Квадратная матрица А называется невырожденной, если определитель матрицы (Δ = det A) не равен нулю (Δ = det A ≠ 0). В противном случае (Δ = 0) матрица А называется вырожденной.

Матрицей , союзной к матрице А, называется матрица

Где А ij - алгебраическое дополнение элемента а ij данной матрицы (оно определяется так же, как и алгебраическое дополнение элемента определителя матрицы ).

Матрица А -1 называется обратной матрице А, если выполняется условие: А × А -1 = А -1 × А = Е, где Е - единичная матрица того же порядка, что и матрица А. Матрица А -1 имеет те же размеры, что и матрица А.

Обратная матрица

Если существуют квадратные матрицы Х и А, удовлетворяющие условию: X × A = A × X = E , где Е - единичная матрица того же самого порядка, то матрица Х называется обратной матрицей к матрице А и обозначается А -1 . Всякая невырожденная матрица имеет обратную матрицу и притом только одну, т. е. для того чтобы квадратная матрица A имела обратную матрицу , необходимо и достаточно, чтобы её определитель был отличен от нуля.

Для получения обратной матрицы используют формулу:

Где М ji дополнительный минор элемента а ji матрицы А.

5. Ранг матрицы. Вычисление ранга с помощью элементарных преобразований.

Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами матрицы. Например, для матрицы можно составить миноры второго порядкаи миноры первого порядка 1, 0, -1, 2, 4, 3.

Определение. Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы. Обозначают ранг матрицы r (A).

В приведенном примере ранг матрицы равен двум, так как, например, минор

Ранг матрицы удобно вычислять методом элементарных преобразований. К элементарным преобразованиям относят следующие:

1) перестановки строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Эти преобразования не меняют ранга матрицы, так как известно, что 1) при перестановке строк определитель меняет знак и, если он не был равен нулю, то уже и не станет; 2) при умножении строки определителя на число, не равное нулю, определитель умножается на это число; 3) третье элементарное преобразование вообще не изменяет определитель. Таким образом, производя над матрицей элементарные преобразования, можно получить матрицу, для которой легко вычислить ранг ее и, следовательно, исходной матрицы.

Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В .

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица называется ступенчатой если она имеет вид:

Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор -го порядка, не равный нулю:

.

Пример. Определить ранг матрицы с помощью элементарных преобразований.

Ранг матрицы равен количеству ненулевых строк, т.е. .

В данной теме рассмотрим понятия алгебраического дополнения и минора. Изложение материала опирается на термины, пояснённые в теме "Матрицы. Виды матриц. Основные термины" . Также нам понадобятся некоторые формулы для вычисления определителей . Так как в данной теме немало терминов, относящихся к минорам и алгебраическим дополнениям, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Минор $M_{ij}$ элемента $a_{ij}$

$M_{ij}$ элемента $a_{ij}$ матрицы $A_{n\times n}$ именуют определитель матрицы, полученной из матрицы $A$ вычёркиванием i-й строки и j-го столбца (т.е. строки и столбца, на пересечении которых находится элемент $a_{ij}$).

Для примера рассмотрим квадратную матрицу четвёртого порядка: $A=\left(\begin{array} {cccc} 1 & 0 & -3 & 9\\ 2 & -7 & 11 & 5 \\ -9 & 4 & 25 & 84\\ 3 & 12 & -5 & 58 \end{array} \right)$. Найдём минор элемента $a_{32}$, т.е. найдём $M_{32}$. Сперва запишем минор $M_{32}$, а потом вычислим его значение. Для того, чтобы составить $M_{32}$, вычеркнем из матрицы $A$ третью строку и второй столбец (именно на пересечении третьей строки и второго столбца расположен элемент $a_{32}$). Мы получим новую матрицу, определитель которой и есть искомый минор $M_{32}$:

Этот минор несложно вычислить, используя формулу №2 из темы вычисления :

$$ M_{32}=\left| \begin{array} {ccc} 1 & -3 & 9\\ 2 & 11 & 5 \\ 3 & -5 & 58 \end{array} \right|= 1\cdot 11\cdot 58+(-3)\cdot 5\cdot 3+2\cdot (-5)\cdot 9-9\cdot 11\cdot 3-(-3)\cdot 2\cdot 58-5\cdot (-5)\cdot 1=579. $$

Итак, минор элемента $a_{32}$ равен 579, т.е. $M_{32}=579$.

Часто вместо словосочетания "минор элемента матрицы" в литературе встречается "минор элемента определителя". Суть остается неизменной: чтобы получить минор элемента $a_{ij}$ нужно вычеркнуть из исходного определителя i-ю строку и j-й столбец. Оставшиеся элементы записывают в новый определитель, который и является минором элемента $a_{ij}$. Например, найдём минор элемента $a_{12}$ определителя $\left| \begin{array} {ccc} -1 & 3 & 2\\ 9 & 0 & -5 \\ 4 & -3 & 7 \end{array} \right|$. Чтобы записать требуемый минор $M_{12}$ нам понадобится вычеркнуть из заданного определителя первую строку и второй столбец:

Чтобы найти значение данного минора используем формулу №1 из темы вычисления определителей второго и третьего порядков :

$$ M_{12}=\left| \begin{array} {cc} 9 & -5\\ 4 & 7 \end{array} \right|=9\cdot 7-(-5)\cdot 4=83. $$

Итак, минор элемента $a_{12}$ равен 83, т.е. $M_{12}=83$.

Алгебраическое дополнение $A_{ij}$ элемента $a_{ij}$

Пусть задана квадратная матрица $A_{n\times n}$ (т.е. квадратная матрица n-го порядка).

Алгебраическое дополнением $A_{ij}$ элемента $a_{ij}$ матрицы $A_{n\times n}$ находится по следующей формуле: $$ A_{ij}=(-1)^{i+j}\cdot M_{ij}, $$

где $M_{ij}$ - минор элемента $a_{ij}$.

Найдем алгебраическое дополнение элемента $a_{32}$ матрицы $A=\left(\begin{array} {cccc} 1 & 0 & -3 & 9\\ 2 & -7 & 11 & 5 \\ -9 & 4 & 25 & 84\\ 3 & 12 & -5 & 58 \end{array} \right)$, т.е. найдём $A_{32}$. Ранее мы уже находили минор $M_{32}=579$, поэтому используем полученный результат:

Обычно при нахождении алгебраических дополнений не вычисляют отдельно минор, а уж потом само дополнение. Запись минора опускают. Например, найдем $A_{12}$, если $A=\left(\begin{array} {ccc} -5 & 10 & 2\\ 6 & 9 & -4 \\ 4 & -3 & 1 \end{array} \right)$. Согласно формуле $A_{12}=(-1)^{1+2}\cdot M_{12}=-M_{12}$. Однако чтобы получить $M_{12}$ достаточно вычеркнуть первую строку и второй столбец матрицы $A$, так зачем же вводить лишнее обозначение для минора? Сразу запишем выражение для алгебраического дополнения $A_{12}$:

Минор k-го порядка матрицы $A_{m\times n}$

Если в предыдущих двух пунктах мы говорили лишь о квадратных матрицах, то здесь поведём речь также и о прямоугольных матрицах, у которых количество строк вовсе не обязательно равняется количеству столбцов. Итак, пусть задана матрица $A_{m\times n}$, т.е. матрица, содержащая m строк и n столбцов.

Минором k-го порядка матрицы $A_{m\times n}$ называется определитель, элементы которого расположены на пересечении k строк и k столбцов матрицы $A$ (при этом предполагается, что $k≤ m$ и $k≤ n$).

Например, рассмотрим такую матрицу:

$$A=\left(\begin{array} {cccc} -1 & 0 & -3 & 9\\ 2 & 7 & 14 & 6 \\ 15 & -27 & 18 & 31\\ 0 & 1 & 19 & 8\\ 0 & -12 & 20 & 14\\ 5 & 3 & -21 & 9\\ 23 & -10 & -5 & 58 \end{array} \right) $$

Запишем для неё какой-либо минор третьего порядка. Чтобы записать минор третьего порядка нам потребуется выбрать какие-либо три строки и три столбца данной матрицы. Например, возьмём строки №2, №4, №6 и столбцы №1, №2, №4. На пересечении этих строк и столбцов будут располагаться элементы требуемого минора. На рисунке элементы минора показаны синим цветом:

$$ \left(\begin{array} {cccc} -1 & 0 & -3 & 9 \\ \boldblue{2} & \boldblue{7} & 14 & \boldblue{6} \\ 15 & -27 & 18 & 31\\ \boldblue{0} & \boldblue{1} & 19 & \boldblue{8}\\ 0 & -12 & 20 & 14\\ \boldblue{5} & \boldblue{3} & -21 & \boldblue{9}\\ 23 & -10 & -5 & 58 \end{array} \right);\; M=\left|\begin{array} {ccc} 2 & 7 & 6 \\ 0 & 1 & 8 \\ 5 & 3 & 9 \end{array} \right|. $$

Миноры первого порядка находятся на пересечении одной строки и одного столбца, т.е. миноры первого порядка равны элементам заданной матрицы.

Минор k-го порядка матрицы $A_{m\times n}=(a_{ij})$ называется главным , если на главной диагонали данного минора находятся только главные диагональные элементы матрицы $A$.

Напомню, что главными диагональными элементами именуют те элементы матрицы, у которых индексы равны: $a_{11}$, $a_{22}$, $a_{33}$ и так далее. Например, для рассмотренной выше матрицы $A$ такими элементами будут $a_{11}=-1$, $a_{22}=7$, $a_{33}=18$, $a_{44}=8$. На рисунке они выделены зелёным цветом:

$$\left(\begin{array} {cccc} \boldgreen{-1} & 0 & -3 & 9\\ 2 & \boldgreen{7} & 14 & 6 \\ 15 & -27 & \boldgreen{18} & 31\\ 0 & 1 & 19 & \boldgreen{8}\\ 0 & -12 & 20 & 14\\ 5 & 3 & -21 & 9\\ 23 & -10 & -5 & 58 \end{array} \right) $$

Например, если в матрице $A$ мы вычеркнем строки и столбцы с номерами 1 и 3, то на их пересечении будут расположены элементы минора второго порядка, на главной диагонали которого будут находиться только диагональные элементы матрицы $A$ (элементы $a_{11}=-1$ и $a_{33}=18$ матрицы $A$). Следовательно, мы получим главный минор второго порядка:

$$ M=\left|\begin{array} {cc} \boldgreen{-1} & -3 \\ 15 & \boldgreen{18} \end{array} \right| $$

Естественно, что мы могли взять иные строки и столбцы, - например, с номерами 2 и 4, получив при этом иной главный минор второго порядка.

Пусть некий минор $M$ k-го порядка матрицы $A_{m\times n}$ не равен нулю, т.е. $M\neq 0$. При этом все миноры, порядок которых выше k, равны нулю. Тогда минор $M$ называют базисным , а строки и столбцы, на которых расположены элементы базисного минора, именуют базисными строками и базисными столбцами .

Для примера рассмотрим такую матрицу:

$$A=\left(\begin{array} {ccc} -1 & 0 & 3 & 0 & 0 \\ 2 & 0 & 4 & 1 & 0\\ 1 & 0 & -2 & -1 & 0\\ 0 & 0 & 0 & 0 & 0 \end{array} \right) $$

Запишем минор этой матрицы, элементы которого расположены на пересечении строк №1, №2, №3 и столбцов с №1, №3, №4. Мы получим минор третьего порядка (его элементы выделены в матрице $A$ фиолетовым цветом):

$$ \left(\begin{array} {ccc} \boldpurple{-1} & 0 & \boldpurple{3} & \boldpurple{0} & 0 \\ \boldpurple{2} & 0 & \boldpurple{4} & \boldpurple{1} & 0\\ \boldpurple{1} & 0 & \boldpurple{-2} & \boldpurple{-1} & 0\\ 0 & 0 & 0 & 0 & 0 \end{array} \right);\; M=\left|\begin{array} {ccc} -1 & 3 & 0 \\ 2 & 4 & 1 \\ 1 & -2 & -1 \end{array} \right|. $$

Найдём значение этого минора, используя формулу №2 из темы вычисления определителей второго и третьего порядков :

$$ M=\left| \begin{array} {ccc} -1 & 3 & 0\\ 2 & 4 & 1 \\ 1 & -2 & -1 \end{array} \right|=4+3+6-2=11. $$

Итак, $M=11\neq 0$. Теперь попробуем составить любой минор, порядок которого выше трёх. Чтобы составить минор четвёртого порядка, нам придётся использовать четвёртую строку, однако все элементы этой строки равны нулю. Следовательно, в любом миноре четвёртого порядка будет нулевая строка, а это означает, что все миноры четвёртого порядка равны нулю. Миноры пятого и более высоких порядков составить мы не можем, так как матрица $A$ имеет всего 4 строки.

Мы нашли минор третьего порядка, не равный нулю. При этом все миноры высших порядков равны нулю, следовательно, рассмотренный нами минор - базисный. Строки матрицы $A$, на которых расположены элементы этого минора (первая, вторая и третья), - базисные строки, а первый, третий и четвёртый столбцы матрицы $A$ - базисные столбцы.

Данный пример, конечно, тривиальный, так как его цель - наглядно показать суть базисного минора. Вообще, базисных миноров может быть несколько, и обычно процесс поиска такого минора куда сложнее и объёмнее.

Введём ещё одно понятие - окаймляющий минор.

Пусть некий минор k-го порядка $M$ матрицы $A_{m\times n}$ расположен на пересечении k строк и k столбцов. Добавим к набору этих строк и столбцов ещё одну строку и столбец. Полученный минор (k+1)-го порядка именуют окаймляющим минором для минора $M$.

Для примера обратимся к такой матрице:

$$A=\left(\begin{array} {ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & -17 & -3 & 19 & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & 12 & 20 & 21 & 54\\ -7 & 10 & 14 & -36 & 79 \end{array} \right) $$

Запишем минор второго порядка, элементы которого расположены на пересечении строк №2 и №5, а также столбцов №2 и №4. Эти элементы выделены в матрице красным цветом:

$$ \left(\begin{array} {ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & \boldred{-17} & -3 & \boldred{19} & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & \boldred{12} & 20 & \boldred{21} & 54\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M=\left|\begin{array} {ccc} -17 & 19 \\ 12 & 21 \end{array} \right|. $$

Добавим к набору строк, на которых лежат элементы минора $M$, ещё строку №1, а к набору столбцов - столбец №5. Получим новый минор $M"$ (уже третьего порядка), элементы которого расположены на пересечении строк №1, №2, №5 и столбцов №2, №4, №5. Элементы минора $M$ на рисунке выделены красным цветом, а элементы, которые мы добавляем к минору $M$ - синим:

$$ \left(\begin{array} {ccccc} -1 & \boldblue{2} & 0 & \boldblue{-2} & \boldblue{-14}\\ 3 & \boldred{-17} & -3 & \boldred{19} & \boldblue{29}\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & \boldred{12} & 20 & \boldred{21} & \boldblue{54}\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M"=\left|\begin{array} {ccc} 2 & -2 & -14 \\ -17 & 19 & 29 \\ 12 & 21 & 54 \end{array} \right|. $$

Минор $M"$ является окаймляющим минором для минора $M$. Аналогично, добавляя к набору строк, на которых лежат элементы минора $M$, строку №4, а к набору столбцов - столбец №3, получим минор $M""$ (минор третьего порядка):

$$ \left(\begin{array} {ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & \boldred{-17} & \boldblue{-3} & \boldred{19} & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & \boldblue{11} & \boldblue{19} & \boldblue{-20} & -98\\ 6 & \boldred{12} & \boldblue{20} & \boldred{21} & 54\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M""=\left|\begin{array} {ccc} -17 & -3 & 19 \\ 11 & 19 & -20 \\ 12 & 20 & 21 \end{array} \right|. $$

Минор $M""$ также является окаймляющим минором для минора $M$.

Минор k-го порядка матрицы $A_{n\times n}$. Дополнительный минор. Алгебраическое дополнение к минору квадратной матрицы.

Вновь вернёмся к квадратным матрицам. Введём понятие дополнительного минора.

Пусть задан некий минор $M$ k-го порядка матрицы $A_{n\times n}$. Определитель (n-k)-го порядка, элементы которого получены из матрицы $A$ после вычеркивания строк и столбцов, содержащих минор $M$, называется минором, дополнительным к минору $M$.

Для примера рассмотрим квадратную матрицу пятого порядка:

$$ A=\left(\begin{array}{ccccc} -1 & 2 & 0 & -2 & -14\\ 3 & -17 & -3 & 19 & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 16 & -20 & -98\\ -7 & 10 & 14 & -36 & 79 \end{array} \right) $$

Выберем в ней строки №1 и №3, а также столбцы №2 и №5. На пересечении оных строк и столбцов будут элементы минора $M$ второго порядка. Эти элементы выделены в матрице $A$ зелёным цветом:

$$ \left(\begin{array}{ccccc} -1 & \boldgreen{2} & 0 & -2 & \boldgreen{-14}\\ 3 & -17 & -3 & 19 & 29\\ 5 & \boldgreen{-6} & 8 & -9 & \boldgreen{41}\\ -5 & 11 & 16 & -20 & -98\\ -7 & 10 & 14 & -36 & 79 \end{array} \right);\; M=\left|\begin{array}{cc} 2 & -14 \\ -6 & 41 \end{array} \right|. $$

Теперь уберём из матрицы $A$ строки №1 и №3 и столбцы №2 и №5, на пересечении которых находятся элементы минора $M$ (элементы убираемых строк и столбцов показаны красным цветом на рисунке ниже). Оставшиеся элементы образуют минор $M"$:

$$ \left(\begin{array}{ccccc} \boldred{-1} & \boldred{2} & \boldred{0} & \boldred{-2} & \boldred{-14}\\ 3 & \boldred{-17} & -3 & 19 & \boldred{29}\\ \boldred{5} & \boldred{-6} & \boldred{8} & \boldred{-9} & \boldred{41}\\ -5 & \boldred{11} & 16 & -20 & \boldred{-98}\\ -7 & \boldred{10} & 14 & -36 & \boldred{79} \end{array} \right);\; M"=\left|\begin{array} {ccc} 3 & -3 & 19 \\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array}\right|. $$

Минор $M"$, порядок которого равен $5-2=3$, является минором, дополнительным к минору $M$.

Алгебраическим дополнением к минору $M$ квадратной матрицы $A_{n\times n}$ называется выражение $(-1)^{\alpha}\cdot M"$, где $\alpha$ - сумма номеров строк и столбцов матрицы $A$, на которых расположены элементы минора $M$, а $M"$ - минор, дополнительный к минору $M$.

Словосочетание "алгебраическое дополнение к минору $M$" часто заменяют словосочетанием "алгебраическое дополнение минора $M$".

Для примера рассмотрим матрицу $A$, для которой мы находили минор второго порядка $ M=\left| \begin{array} {ccc} 2 & -14 \\ -6 & 41 \end{array} \right| $ и дополнительный к нему минор третьего порядка: $M"=\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|$. Обозначим алгебраическое дополнение минора $M$ как $M^*$. Тогда согласно определению:

$$ M^*=(-1)^\alpha\cdot M". $$

Параметр $\alpha$ равен сумме номеров строк и столбцов, на которых находится минор $M$. Этот минор расположен на пересечении строк №1, №3 и столбцов №2, №5. Следовательно, $\alpha=1+3+2+5=11$. Итак:

$$ M^*=(-1)^{11}\cdot M"=-\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|. $$

В принципе, используя формулу №2 из темы вычисления определителей второго и третьего порядков , можно довести вычисления до конца, получив значение $M^*$:

$$ M^*=-\left| \begin{array} {ccc} 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end{array} \right|=-30. $$

Минором любого элемента определителя называется, определитель второго

порядка, полученный вычеркиванием из данного определителя строки и столбца, содержащих этот элемент. Так минор для элемента

для элемента :

Алгебраическим дополнением любого элемента определителя называют минор этого элемента взятый с множителем , где i – номер строки элемента, j – номер столбца. Таким образом, алгебраическое дополнение элемента :

Пример. Найти алгебраические дополнения для элементов определителя.

Теорема . Определитель равен сумме произведений элементов любого его столбца или строки на их алгебраические дополнения.

Другими словами, имеют место следующие равенства для определителя .

Доказательство этих равенств состоит из замены алгебраических дополнений их выражениями через элементы определителя, при этом получим выражение (3). Предлагается это выполнить самостоятельно. Замена определителя по одной из шести формул называется разложением определителя по элементам соответствующего столбца или строки. Эти разложения применяют для вычисления определителей.

Пример. Вычислить определитель, разложив его по элементам второго столбца.

Используя теорему о разложении определителя третьего порядка по элементам строки или столбца, можно доказать справедливость свойств 1-8 для определителей третьего порядка. Предполагается проверить справедливость этого утверждения. Свойства определителей и теорема о разложении определителя по элементам столбца или строки позволяют упростить вычисления определителей.

Пример . Вычислить определитель.

Вычислим общий множитель «2» элементов второй строки, а затем такой же общий множитель элементов третьего столбца.

Прибавим элементы первой строки к соответствующим элементам второй строки, затем третьей строки.

Разложим определитель по элементам первого столбца.

Без преобразования матрицы, определитель легко посчитать только для матриц размером 2×2 и 3×3. Это делается по формулам:

Для матрицы

определитель равен:

Для матрицы

определитель равен:

a11*(a22*a33-a23*a32)-a12*(a21*a33-a23*a31)+a13*(a21*a32-a22*a31)

Расчёты для матриц размером 4×4 и выше затруднительны, поэтому их нужно преобразовывать в соответствии со свойствами определителя. Нужно стремиться получить матрицу, в которой все значения кроме одного любого столбца или любой строки равны нулю. Пример такой матрицы:

Для неё определитель равен:

A12*(a21*(a33*a44-a34*a43)-a23*(a31*a44-a34*a41)+a24*(a31*a43-a33*a41))

Обратите внимание, что

a21*(a33*a44-a34*a43)-a23*(a31*a44-a34*a41)+a24*(a31*a43-a33*a41)

это вычисление детерминанта матрицы, полученой вычетом строки и столбца, на пересечении которых находиться единственное не нулевое числов строки/столбца, по которому мы разлагаем матрицу:

И полученное значение мы умножаем на то самое число, из "нулевого" столбца / строки, при этом число может быть умножено на -1 (все подробности ниже).

Если привести матрицу к треугольному виду, то её определитель вычисляется как произведение цифр по диагонали. Например, для матрицы

Определитель равен:

Аналогично следует поступать с матрицами 5×5, 6×6 и другими больших размерностей.

Преобразования матриц нужно выполнять в соответствии со свойствами определителя. Но прежде чем перейти к практике по вычислению определителя для матриц 4×4, давайте вернёмся к матрицам 3×3 и подробно рассмотрим, как вычисляется определитель для них.

Минор

Определитель матрицы не очень прост для понимания, поскольку в его понятии присутствует рекурсия: определитель матрицы состоит из нескольких элементов, в том числе из определителя (других) матриц.

Чтобы не застрять на этом, давайте прямо сейчас (временно) примем, что определитель матрицы

вычисляется так:

Ещё разберёмся в условных обозначения и в таких понятиях как минор и алгебраическое дополнение .

Буквой i мы обозначаем порядковый номер стоки, буквой j - порядковый номер столбца.

a ij означает элемент матрицы (цифру) на пересечении строки i и столбца j.

Представим себе матрицу, которая получена из исходной удалением строки i и столбца j. Определитель новой матрицы, которая получена из исходной удалением строки i и столбца j, называется минором M ij элемента a ij .

Проиллюстрируем сказанное. Предположим, дана матрица

Тогда для определения минора M 11 элемента a 11 нам нужно составить новую матрицу, которая получается из исходной удалением первой строки и первого столбца:

И вычислить для неё определитель: 2*1 – (-4)*0 = 2

Для определения минора M 22 элемента a 22 нам нужно составить новую матрицу, которая получается из исходной удалением второй строки и второго столбца:

И вычислить для неё определитель: 1*1 -3*3 = -8

Алгебраическое дополнение

Алгебраическим дополнением А ij для элемента a ij называется минор M ij этого элемента, взятый со знаком «+», если сумма индексов строки и столбца (i + j), на пересечении которых стоит этот элемент, чётная, и со знаком «-», если сумма индексов нечётная.

Таким образом,

Для матрицы из предыдущего примера

А 11 = (-1) (1+1) * (2*1 – (-4)*0) = 2

А 22 = (-1) (2+2) * (1*1 -3*3) = -8

Вычисление определителя для матриц

Определителем порядка n, соответствующим матрице А, называется число, обозначаемое det A и вычисляемое по формуле:

В этой формуле нам всё уже знакомо, давайте теперь посчитаем определитель матрицы для

Каков бы ни был номер строки i=1,2,…, n или столбца j = 1, 2,…, n определитель n-го порядка равен сумме произведений элементов этой строки или этого столбца на их алгебраические дополнения, т. е.

Т.е. детерминант можно вычислить по любому столбцу или по любой строке.

Чтобы убедиться в этом, вычислим определитель для матрицы из последнего примера по второму столбцу

Как видим, результат идентичный и для этой матрицы определитель всегда будет -52 не зависимо от того, по какой строке или по какому столбцу мы его будем считать.

Свойства определителя матриц

  1. Строки и столбцы определителя равноправны, т. е. величина определителя не изменится, если поменять местами его строки и столбцы с сохранением порядка их следования. Эта операция называется транспонированием определителя. В соответствии со сформулированным свойством det A = det AT.
  2. При перестановке местами двух строк (или двух столбцов) определитель сохраняет свою абсолютную величину, но меняет знак на противоположный.
  3. Определитель с двумя одинаковыми строками (или столбцами) равен нулю.
  4. Умножение всех элементов некоторой строки (или некоторого столбца) определителя на число λ равносильно умножению определителя на число λ.
  5. Если все элементы какой-либо строки (или какого-либо столбца) определителя равны нулю, то и сам определитель равен нулю.
  6. Если элементы двух строк (или двух столбцов) определителя пропорциональны, то определитель равен нулю.
  7. Если к элементам некоторой строки (или некоторого столбца) определителя прибавить соответствующие элементы другой строки (другого столбца), умноженные на произвольный множитель λ, то величина определителя не изменится.
  8. Сумма произведений элементов какой-либо строки (какого-либо столбца) определителя на соответствующие алгебраические дополнения элементов любой другой строки (любого другого столбца) равна нулю.
  9. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых a ij = b j + c j то определитель равен сумме двух определителей, у которых все строки, кроме i-й, такие же, как и в заданном определителе, i-я строка в одном из слагаемых состоит из элементов b j , а в другом — из элементов c j . Аналогичное свойство справедливо и для столбцов определителя.
  10. Определитель произведения двух квадратных матриц равен произведению их определителей: det (А * В) = det A * det B.

Для вычисления определителя любого порядка можно применять метод последовательного понижения порядка определителя. Для этого пользуются правилом разложения определителя по элементам строки или столбца. Еще один способ вычисления определителей заключается в том, чтобы с помощью элементарных преобразований со строками (или столбцами), прежде всего в соответствии со свойствами 4 и 7 определителей, привести определитель к виду, когда под главной диагональю определителя (определяемой так же, как и для квадратных матриц) все элементы равны нулю. Тогда определитель равен произведению элементов, расположенных на главной диагонали.

При вычислении определителя последовательным понижением порядка для уменьшения объема вычислительной работы целесообразно с помощью свойства 7 определителей добиться обнуления части элементов какой-либо строки или какого-либо столбца определителя, что уменьшит число вычисляемых алгебраических дополнений.

Приведение матрицы к треугольному виду, преобразование матрицы, облегчающее вычисление определителя

Показанные ниже методы нецелесообразно использовать для матриц 3×3, но я предлагаю рассмотреть суть методов на простом примере. Воспользуемся матрицей, для которой мы уже считали определитель — нам будет проще проверить правильность вычислений:

Используя 7-е свойство определителя, вычтем из второй строки третью, умноженную на 2:

из третьей строки вычтем соответствующие элементы первой строки определителя, умноженные на 3:

Так как элементы определителя, расположенные под его главной диагональю, равны 0, то, следовательно, определитесь равен произведению элементов, расположенных на главной диагонали:

1*2*(-26) = -52.

Как видим, ответ совпал с полученными ранее.

Давайте вспомним формулу определителя матрицы:

Детерминант — это сумма алгебраических дополнений, умноженная на члены одной из строк или одного из столбцов.

Если в результате преобразований мы сделаем так, что одна из строк (или столбец) будет состоять полностью из нулей кроме одной позиции, то нам не нужно будет считать все алгебраические дополнения, поскольку они заведомо будут равны нулю. Как и предыдущий метод, этот целесообразно применять для матриц больших размеров.

Покажем пример на той же самой матрице:

Замечаем, что второй столбец определителя уже содержит один нулевой элемент. Прибавляем к элементам второй строки элементы первой строки, умноженные на -1. Получим:

Вычислим определитель по второму столбцу. Нам нужно посчитать только одно алгебраическое дополнение, поскольку остальные заведомо сводятся к нулю:

Вычисление определителя для матриц 4×4, 5×5 и больших размерностей

Чтобы избежать слишком больших вычислений для матриц больших размеров следует делать преобразования, описанные выше. Приведём пару примеров.

Вычислить определитесь матрицы

Р е ш е н и е. Используя 7-е свойство определителя, вычтем из второй строки третью, из четвёртой строки — соответствующие элементы первой строки определителя, умноженные соответственно на 3, 4, 5. Эти действия сокращённо будем обозначать так: (2) — (1) * 3; (3) — (1) * 4; (4) — (1) * 5. Получим:

Выполним действия