Понятие операционных систем. Принципы построения операционных систем

Предмет: Операционные системы.
Вопрос: №8

—————————————————————

Принципы построения ОС:

1.) Принцип модульности – под модулем в общем случае понимают функционально законченный элемент системы, выполненный в соответствии с принятыми межмодульными интерфейсами. По своему определению модуль предполагает возможность легкой замены его на другой при наличии заданных интерфейсов. В значительной степени разделение системы на модули определяется используемым методом проектирования ОС (снизу вверх или наоборот).

Особое значение при построение ОС имеют привилегированные, повторно входимые и реентерабельные модули (реентабель-ность – дословно повторновходимость; специальный термин для обозначения работоспособности программы; свойство программы корректно выполняться при рекурсивном (возвращаемом) вызове из прерывания).

Наибольший эффект от использования данного принципа достижим в случае одновременного распространения данного принципа на ОС, прикладные программы и аппаратуру.

2.) Принцип функциональной избиратель-ности – в ОС выделяется некоторая часть важных модулей, которые должны постоянно находится в оперативной памяти для более эффективной организации вычислительного процесса. Эту часть в ОС называют ядром, так как это – основа системы. При формировании состава ядра приходится учитывать два противоречивых требования. С одной стороны, в состав ядра должны войти наиболее часто используемые системные модули, с другой – количество модулей должно быть таковым, чтобы объем памяти, занимаемый ядром, не был слишком большим. Помимо программных модулей, входящих в состав ядра и постоянно располагающихся в оперативной памяти, может быть много других системных программных модулей, которые получают название транзитных . Транзитные программные модули загружаются в оперативную память только при необходимости и в случае отсутствия свободного пространства могут быть замещены другими транзитными модулями.

3.) Принцип генерируемости ОС: суть принципа состоит в организации (выборе) такого способа исходного представления центральной системной управляющей программы ОС (ядра и постоянно находящихся в оперативной памяти основных компонентов), который позволял настраивать эту системную супервизорную часть исходя из конкретной конфигурации конкретного вычислительного комплекса и круга решаемых задач. Эта процедура проводится редко перед достаточно протяженным периодом эксплуатации ОС. Процесс генерации осуществляется с помощью специальной программы-генера-тора и соответствующего входного языка для этой программы, позволяющего описывать программные возможности системы и конфигурацию машины. В результате генерации получается полная версия ОС. Сгенерированная версия ОС представляет собой совокупность системных наборов модулей и данных.

4.) Принцип функциональной избыточности: Этот принцип учитывает возможность проведения одной и той же работы различными средствами. В состав ОС может входить несколько типов мониторов (модулей супервизора, управляющих тем или другим видом ресурса), различные средства организации коммуникаций между вычислительными процессами. Наличие нескольких типов мониторов, нескольких систем управления файлами позволяет пользователям быстро и наиболее адекватно адаптировать ОС к определенной конфигурации вычислительной системы, обеспечивать максимально эффективную загрузку технических средств при решении конкретного класса задач, получать максимальную производительность при решении заданного класса задач.

5.) Принцип виртуализации: построение виртуальных ресурсов, их распределение и использование в настоящее время применяется практически в любой ОС. Этот принцип позволяет представить структуру системы в виде определенного набора планировщиков процессов и распредели-телей ресурсов (мониторов) и использовать единую централизованную схему распреде-ления ресурсов.

Наиболее естественным и законченным проявлением концепции виртуальности является понятие виртуальной машины . Виртуальная машина, предоставляемая пользователю, воспроизводит архитектуру реальной машины, но архитектурные элементы в таком представлении выступают с новыми или улучшенными характе-ристиками, как правило, упрощающими работу с системой. Характеристики могут быть произвольными, но чаще всего пользователи желают иметь собственную «идеальную» по архитектурным характерис-тикам машину в следующем составе:

— единообразная по логике работы виртуаль-ная память практически неограниченного объема.

— произвольное количество виртуальных процессоров, способных работать парал-лельно и взаимодействовать во время рабо-ты.

— произвольное количество внешних вирту-альных устройств, способных работать с памятью виртуальной машины параллельно или последовательно, асинхронно или синхронно по отношению к работе того или иного виртуального процессора, иници-ирующего работу этих устройств.

Одним из аспектов виртуализации является организация возможности выполнения в данной ОС приложений, которые разра-батывались для других ОС. Другими сло-вами, речь идет об организации нескольких операционных сред.

6.) Принцип независимости программ от внешних устройств: этот принцип реализу-ется сейчас в подавляющем большинстве ОС общего применения. Впервые наиболее последовательно данный принцип был реализован в ОС UNIX. Реализован он и в большинстве современных ОС для ПК. Этот принцип заключается в том, что связь программ с конкретными устройствами производится не на уровне трансляции программы, а в период планирования ее исполнения. В результате перекомпиляция при работе программы с новым устройством, на котором располагаются данные, не требуется.

7.) Принцип совместимости: одним из аспектов совместимости является способ-ность ОС выполнять программы, написан-ные для других ОС или для более ранних версий данной ОС, а также для другой аппаратной платформы. Необходимо разделять вопросы двоичной совмести-мости и совместимости на уровне исходных текстов приложений.

Двоичная совместимость достигается в том случае, когда можно взять исполняемую программу и запустить ее на выполнение на другой ОС. Для этого необходимы совместимость на уровне команд процессора, и совместимость на уровне системных вызовов, и даже на уровне библиотечных вызовов, если они являются динамически связываемыми.

Совместимость на уровне исходных текстов требует наличия соответствующего трансля-тора в составе системного программного обеспечения, а также совместимости на уровне библиотек и системных вызовов. При этом необходима перекомпиляция имею- щихся исходных текстов в новый выполня-емый модуль.

Гораздо сложнее достичь двоичной совместимости между процессорами, основанными на разных архитектурах. Для того чтобы один компьютер выполнял программы другого (например, программу для ПК типа IBM PC желательно выполнить на ПК типа Macintosh фирмы Apple), этот компьютер должен работать с машинными командами, которые ему изначально непо-нятны. В таком случае процессор типа 680×0 (или PowerPC) должен исполнять двоичный код, предназначенный для процессора i80x86. Процессор 80×86 имеет свои собственные дешифратор команд, регистры и внутреннюю архитектуру. Процессор 680×0 не понимает двоичный код 80×86, поэтому он должен выбрать каждую коман-ду, декодировать ее, чтобы определить, для

чего она предназначена, а затем выполнить эквивалентную подпрограмму, написанную для 680×0.

Одним из средств обеспечения совмести-мости программных и пользовательских интерфейсов является соответствие стан-дартам POSIX, использование которого позволяет создавать программы в стиле UNIX, легко переносимых впоследствии из одной системы в другую.

8.) Принцип открытости и наращиваемости: Открытая операционная система доступна для анализа как пользователям, так и системным специалистам, обслуживающим вычислительную систему. Наращиваемая (модифицируемая, развиваемая) ОС позволяяет не только использовать возможности генерации, но и вводить в ее состав новые модули, совершенствовать существующие и т.д. Другими словами, следует обеспечить возможность легкого внесения дополнений и изменений в необходимых случаях без нарушения целостности системы. Прекрасные возмож-ности для расширения предоставляет подход к структурированию ОС по типу клиент-сервер с использованием микро-ядерной технологии. В соответствии с этим подходом ОС строится как совокупность привилегированной управляющей программ-мы и набора непривилегированных услуг (серверов). Основная часть ОС остается неизменной, и в то же время могут быть добавлены новые серверы или улучшены старые. Этот принцип иногда трактуют как расширяемость системы .

9.) Принцип мобильности: операционная система относительно легко должна перено-

ситься с процессора одного типа на процессор другого типа и с аппаратной платформы одного типа, которая включает наряду с типом процессора и способ организации всей аппаратуры компьютера (архитектуру вычислительной системы), на аппаратную платформу другого типа. Заметим, что принцип переносимости очень близок принципу совместимости, хотя это и не одно и то же. Создание переносимой ОС аналогично написанию любого перено-симого кода, при этом нужно следовать некоторым правилам:

— большая часть ОС должна быть выпол-нена на языке, имеющемся на всех системах, на которые планируется в даль-нейшем ее переносить. Это, прежде всего, означает, что ОС должна быть написана на языке высокого уровня, предпочтительно стандартизованном, например на языке С. Программа, написанная на ассемблере, не является в общем случае переносимой.

— важно минимизировать или, если возмож-но, исключить те части кода, которые непосредственно взаимодействуют с аппаратными средствами. Зависимость от аппаратуры может иметь много форм. Некоторые очевидные формы зависимости включают прямое манипулирование регистрами и другими аппаратными средст-вами. Наконец, если аппаратно-зависимый код не может быть полностью исключен, то он должен быть изолирован в нескольких хорошо локализуемых модулях. Аппаратно-зависимый код не должен быть распределен по всей системе. Например, можно спрятать аппаратно-зависимую структуру в программ-мно задаваемые данные абстрактного типа.

Введение стандартов POSIX преследовало цель обеспечить переносимость создава-емого программного обеспечения.

10.) Принцип обеспечения безопасности вычислений: обеспечение безопасности при выполнении вычислений является жела-тельным свойством для любой много-пользовательской системы. Правила безопасности определяют такие свойства, как защиту ресурсов одного пользователя от других и установление квот по ресурсам для предотвращения захвата одним пользова-телем всех системных ресурсов, таких, например, как память.

Обеспечение защиты информации от несанкционированного доступа является обязательной функцией сетевых операци-онных систем.

—————————————————————

Что такое POSIX : платформенно-незави-симый системный интерфейс для компьюте-рного окружения POSIX (Portable Operating System Interface for Computer Environments) – это стандарт IEEE(Institute of Electrical and Electronics Engineers − институт инженеров по электротехнике и радиоэлектронике.), описывающий системные интерфейсы для открытых ОС, в том числе оболочки, утилиты и инструментарии. Помимо этого, согласно POSIX, стандартизированными являются задачи обеспечения безопасно-сти, задачи реального времени, процессы администрирования, сетевые функции и обработка транзакций. Стандарт базируется на UNIX-системах, но допускает реализацию и в других ОС. POSIX возник как попытка всемирно известной организации IEEE пропагандировать переносимость прило-жений в UNIX-средах путем разработки абстрактного, платформенно-независимого стандарта. Например, известная ОС реального времени QNX соответствует спецификациям этого стандарта.

Этот стандарт подробно описывает систему виртуальной памяти VMS (Virtual Memory System,), многозадачность МРЕ (Multi-Process Executing) и технологию переноса операционных систем CTOS (An Operating System produced Convergent Technology …). Таким образом, на самом деле POSIX представляет собой множество стандартов, именуемых POSIX.I –POSIX.12. Следует также особо отметить, что в POSIX.1 предполагается язык С в качестве основного

языка описания системных функций API.

Таким образом, программы, написанные с соблюдением данных стандартов, будут одинаково выполняться на всех POSIX-совместимых системах. Однако стандарт в некоторых случаях носит лишь рекомен-дательный характер. Часть стандартов описана очень строго, тогда как другая часть только поверхностно раскрывает основные требования.

Реализации POSIX API на уровне операционной системы различны. Если UNIX-системы в своем абсолютном большинстве изначально соответствуют спецификациям IEEE Standard 1003.1-1990, то WinAPI не является POSIX-совместимым. Однако для поддержки данного стандарта в операционной системе MS Windows NT введен специальный модуль поддержки POSIX API, работающий на уровне привилегий пользовательских процессов.

Данный модуль обеспечивает конвертацию и передачу вызовов из пользовательской программы к ядру системы и обратно, работая с ядром через Win API. Прочие приложения, созданные с использованием WinAPI, могут передавать информацию POSIX-приложениям через стандартные механизмы потоков ввода/вывода (stdin, stdout).

Нет похожих постов...

Частотный принцип. Основан на выделении в алгоритмах программ, а в обрабатываемых массивах действий и данных по частоте использования. Действия и данные, которые часто используются, располагаются в операционной памяти, для обес­печения наиболее быстрого доступа. Основным средством такого доступа является организация многоуровневого планиро­вания. На уровень долгосрочного планирования выносятся редкие и длинные операции управления деятельностью системы. К краткосрочному планированию подвергаются часто используемые и короткие операции. Система инициирует или преры­вает исполнение программ, предоставляет или забирает динамически требуемые ресурсы, и прежде всего центральный про­цессор и память.

Принцип модульности . Модуль - это функционально законченный элемент системы, выполненный в соответствии с приня­тыми межмодульными интерфейсами. Модуль по определению предполагает возможность замены его на любой другой при наличии соответствующих интерфейсов. Чаще всего при построении ОС разделение на модули происходит по функциональ­ному признаку. Важное значение при построении ОС имеют привилегированные, повторно входимые и реентерабельные модули. Привилегированные модули функционируют в привилегированном режиме, при котором отключается система пре­рываний, и никакие внешние события не могут нарушить последовательность вычислений. Реентерабельные модули допус­кают повторное многократное прерывание исполнения и повторный запуск из других задач. Для этого обеспечивается сохра­нение промежуточных вычислений и возврат к ним с прерванной точки. Повторно входимые модули допускают многократ­ное параллельное использование, однако не допускают прерываний. Они состоят из привилегированных блоков и повторное обращение к ним возможно после завершения какого-либо из этих блоков. Принцип модульности отражает технологические и эксплуатационные свойства системы. Максимальный эффект от использования достигается, если принцип распространяет­ся и на ОС, и на прикладные программы, и на аппаратуру.

Принцип функциональной избирательности. Этот принцип подразумевает выделение некоторых модулей, которые долж­ны постоянно находиться в оперативной памяти для повышения производительности вычислений. Эту часть ОС называют ядром. С одной стороны, чем больше модулей в ОЗУ, тем выше скорость выполнения операций. С другой стороны, объем памяти, занимаемой ядром, не должен быть слишком большим, поскольку в противном случае обработка прикладных задач будет низкоэффективной. В состав ядра включают модули по управлению прерываниями, модули для обеспечения мультизадачности и передачи управления между процессами, модули по распределению памяти и т.д.

Принцип генерируемости ОС. Этот принцип определяет такой способ организации архитектуры ядра ОС, который позво­лял бы настраивать его, исходя из конкретной конфигурации вычислительного комплекса и круга решаемых задач. Эта про­цедура выполняется редко, перед достаточно протяженным периодом эксплуатации ОС. Процесс генерации осуществляется с помощью специальной программы-генератора и соответствующего входного языка. В результате генерации получается пол­ная версия ОС, представляющая собой совокупность системных наборов модулей и данных. Принцип модульности сущест­венно упрощает генерацию. Наиболее ярко этот принцип используется в ОС Linux, которая позволяет не только генерировать ядро ОС, но указывать состав подгружаемых, т.н. транзитных модулей. В остальных ОС конфигурирование выполняется в процессе инсталляции.

Принцип функциональной избыточности. Принцип учитывает возможность проведения одной и той же операции различ­ными средствами. В состав ОС могут входить несколько разных мониторов, управляющих тем или иным видом ресурса, не­сколько систем управления файлами и т.д. Это позволяет быстро и достаточно адекватно адаптировать ОС к определенной конфигурации вычислительной системы, обеспечить максимально эффективную загрузку технических средств при решении конкретного класса задач и получить при этом максимальную производительность.

Принцип умолчания. Применяется для облегчения организации связи с системами, как на стадии генерации, так и при ра­боте с системой. Принцип основан на хранении в системе некоторых базовых описаний, структур процесса, модулей, конфи­гураций оборудования и данных, определяющих прогнозируемые объемы требуемой памяти, времени счета программы, по­требности во внешних устройствах, которые характеризуют пользовательские программы и условия их выполнения. Эту ин­формацию пользовательская система использует в качестве заданной, если она не будет заданна или сознательно не конкре­тизирована. В целом применение этого принципа позволяет сократить число параметров устанавливаемых пользователем, когда он работает с системой.

Принцип перемещаемости. Предусматривает построение модулей, исполнение которых не зависит от места расположения в операционной памяти. Настройка текста модуля в соответствии с его расположением в памяти осуществляется либо специ­альными механизмами, либо по мере ее выполнения. Настройка заключается в определении фактических адресов, исполь­зуемых в адресных частях команды, и определяется применяемым способом адресации и алгоритмом распределения опера­тивной памяти, принятой для данной ОС. Она может быть распределена и на пользовательские программы.

Принцип виртуализации. Принцип позволяет представить структуру системы в виде определенного набора планировщиков процессов и распределителей ресурсов (мониторов), используя единую централизованную схему. Концепция виртуальности выражается в понятии виртуальной машины. Любая ОС фактически скрывает от пользователя реальные аппаратные и иные ресурсы, заменяя их некоторой абстракцией. В результате пользователи видят и используют виртуальную машину как доста­точно абстрактное устройство, способное воспринимать их программы, выполнять их и выдавать результат. Пользователю совершенно не интересна реальная конфигурация вычислительной системы и способы эффективного использования ее ком­понентов. Он работает в терминах используемого им языка и представленных ему виртуальной машиной ресурсов. Для не­скольких параллельных процессов создается иллюзия одновременного использования того, что одновременно в реальной системе существовать не может. Виртуальная машина может воспроизводить и реальную архитектуру, однако элементы ар­хитектуры выступают с новыми, либо улучшенными, характеристиками, зачастую упрощающими работу с системой. Иде­альная, с точки зрения пользователя, машина должна иметь:

Единообразную по логике работы виртуальную память практически неограниченного объема;

Произвольное количество виртуальных процессоров, способных функционировать параллельно и взаимодейство­вать во время работы;

Произвольное количество виртуальных внешних устройств, способных получать доступ к памяти виртуальной ма­шины последовательно или параллельно, синхронно или асинхронно. Объемы информации не ограничиваются.

Чем больше виртуальная машина, реализуемая ОС, приближена к идеальной, т.е. чем больше ее архитектурно-логические характеристики отличны от реальных, тем большая степень виртуальности достигнута. ОС строится как иерархия вложенных друг в друга виртуальных машин. Нижним уровнем программ является аппаратные средства машин. Следующим уровнем уже является программным, который совместно с нижним уровнем обеспечивает достижение машиной новых свойств. Каж­дый новый уровень дает возможность расширять функции возможности по обработке данных и позволяет достаточно просто производить доступ к низшим уровням. Применение метода иерархического упорядочивания виртуальных машин наряду с достоинствами: систематичность проекта, возрастание надежности программных систем, уменьшение сроков разработки имеет проблемы. Основная из них: определение свойств и количества уровней виртуализации, определения правил внесения на каждый уровень необходимых частей ОС. Свойства отдельных уровней абстракции (виртуализации):

1. На каждом уровне ничего не известно о свойствах и о существовании более высоких уровней.

2. На каждом уровне ничего не известно о внутреннем строении других уровней. Связь между ними осуществляется только через жесткие, заранее определенные сопряжения.

3. Каждый уровень представляет собой группу модулей, некоторые из них являются внутренними для данного и доступ­ны для других уровней. Имена остальных модулей известны на следующим, более высоком уровне, и представляют собой сопряжение с этим уровнем.

4. Каждый уровень располагает определенными ресурсами и либо скрывает от других уровней, либо представляет дру­гим уровням их абстракции (виртуальные ресурсы).

5. Каждый уровень может обеспечивать некоторую абстракцию данных в системе.

6. Предположения, что на каждом уровне делается относительно других уровней, должны быть минимальными.

7. Связь между уровнями ограничена явными аргументами, передаваемыми с одного уровня на другой.

8. Недопустимо совместное использование несколькими уровнями глобальных данных.

9. Каждый уровень должен иметь более прочное и слабое сцепление с другими уровнями.

10. Всякая функция, выполняемая уровнем абстракции должна иметь единственный вход.

Принцип независимости ПО от внешних устройств. Принцип заключается в том, что связь программы с конкретными уст­ройствами производится не на уровне трансляции программы, а в период планирования ее использования. При работе про­граммы с новым устройством, перекомпиляция не требуется. Принцип реализуется в подавляющем большинстве ОС.

Принцип совместимости. Этот принцип определяет возможность выполнения ПО, написанного для другой ОС или для бо­лее ранних версий данной ОС. Различают совместимость на уровне исполняемых файлов и на уровне исходных текстов про­грамм. В первом случае готовую программу можно запустить на другой ОС. Для этого требуется совместимость на уровне команд микропроцессора, на уровне системных и библиотечных вызовов. Как правило, используются специально разрабо­танные эмуляторы, позволяющие декодировать машинный код и заменить его эквивалентной последовательностью команд в терминах другого процессора. Совместимость на уровне исходных текстов требует наличия соответствующего транслятора и также совместимости на уровне системных вызовов и библиотек.

Принцип открытости и наращиваемости. Открытость подразумевает возможность доступа для анализа как системным специалистам, так и пользователям. Наращиваемость подразумевает возможность введения в состав ОС новых модулей и модификации существующих. Построение ОС по принципу клиент-сервер с использованием микроядерной структуры обес­печивает широкие возможности по наращиваемости. В этом случае ОС строится как совокупность привилегированной управ­ляющей программы и непривилегированных услуг-серверов. Основная часть остается неизменной, тогда как серверы могут быть легко заменены или добавлены.

Принцип мобильности (переносимости). Подразумевает возможность перенесения ОС с аппаратной платформы одного типа на платформу другого типа. При разработке переносимой ОС следуют следующим правилам: большая часть ОС пишет­ся на языке, который имеет трансляторы на всех платформах, предназначенных для использования. Это язык высокого уров­ня, как правило, С. Программа на ассемблере в общем случае не является переносимой. Далее, минимизируют или исключа­ют те фрагменты кода, которые непосредственно взаимодействуют с аппаратными ресурсами. Аппаратно-зависимый кол изолируется в нескольких хорошо локализуемых модулях.

Принцип безопасности. Подразумевает защиту ресурсов одного пользователя от другого, а также предотвращения захвата всех системных ресурсов одним пользователем, включая и защиту от несанкционированного доступа. Согласно стандарту NCSC (National Computer Security Center) 1985 года, т.н. Оранжевой книге, системы подразделяются на 7 категорий: D, С1, С2, В1, В2, ВЗ, А1, где А является классом с максимальной защитой. Большинство современных ОС отвечают требованиям уровня С2. Он обеспечивает:

Средства секретного входа, позволяющие идентифицировать пользователя путем ввода уникального имени и пароля при входе в систему;

Избирательный контроль доступа, позволяющий владельцу ресурса определить, кто имеет доступ к ресурсу и его права;

Средства учета и наблюдения (аудита), обеспечивающие возможность обнаружения и фиксации событий, связан­ных с безопасностью системы и доступом к системным ресурсам;

Защита памяти, подразумевающая инициализацию перед повторным использованием.

На этом уровне система не защищена от ошибок пользователя, но его действия легко отслеживаются по журналу. Системы уровня В распределяют пользователей по категориям, присваивая определенный рейтинг защиты, и предоставляя доступ к данным только в соответствии с этим рейтингом. Уровень А требует выполнения формального, математически обоснованно­го доказательства соответствия системы определенным критериям безопасности. На уровне А управляющие безопасностью механизмы занимают до 90% процессорного времени. В ОС реализуется несколько подходов для обеспечения защиты. Од­ним из них является двухконтекстность работы процессора, т.е. в каждый момент времени процессор может выполнить либо программу из состава ОС, либо прикладную или служебную программу, не входящую в состав ОС. Для того, чтобы гаранти­ровать невозможность непосредственного доступа к любому разделяемому ресурсу со стороны пользовательских и служеб­ных программ, в состав машинных команд вводятся специальные привилегированные команды, управляющие распределени­ем и использованием ресурсов. Эти команды разрешается выполнять только ОС. Контроль за их выполнением производится аппаратно. При попытке выполнить такую команду возникает прерывание, и процессор переводится в привилегированный режим. Для реализации принципа защиты используется механизм защиты данных и текста программ, находящихся в ОЗУ. Самым распространенным подходом при этом является контекстная защита. Для программ и пользователей выделяется оп­ределенный участок памяти, и выход за его пределы приводит к прерыванию по защите. Механизм контроля реализуется аппаратным способом на основе ограниченных регистров или ключей памяти. Применяются различные способы защиты хранения данных в файлах. Самый простой способ защиты - парольный.

Материал к лекции

«Архитектура операционных систем

Основные принципы построения операционных систем»

(по Таненбауму)

Среди множества принципов, которые используются при построении ОС, перечислим несколько наиболее важных

Принцип модульности

Под модулем в общем случае понимают функционально законченный элемент системы, выполненный в соответствии с принятыми межмодульными интерфейсами.

По своему определению модуль предполагает возможность без труда заме нить его на другой при наличии заданных интерфейсов.

Способы обособления составных частей ОС в отдельные модули могут существенно различаться, но чаще всего разделение происходит именно по функциональному признаку. В зна чительной степени разделение системы на модули определяется используемым методом проектирования ОС (снизу вверх или наоборот).

Мы говорим о системных программных модулях (они являются программными ресурсами и могут быть распределены между выполняющимися процессами).

Программные модули могут быть однократно и многократно используемыми .

Однократно используемыми назвают такие модули, которые могут быть правильно выполнены только один раз. Т.е. в процессе выполнения они могут испортить себя (повреждается часть кода или исходные данные). Очевидно, что они являются неделимыми ресурсами. Эти модули обычно используются на этапе загрузки ОС (файлы на системном диске, в которых записаны эти модули при этом не портятся, поэтому могут быть использованы при следующих запусках).

Многократно используемые программные модули делятся на

- привилегированные,

- повторно входимые и

- реентерабельные модули.

Привилегированные работают в привилегированном режиме (т.е. при отключенной системе прерываний). Таким образом, никакие внешние события не могут нарушить порядок их выполнения). Эти модули являются попеременно разделяемым ресурсом.

Непривилегированные модули – это обычные программные модули, которые могут быть прерваны во время своей работы.

(В общем случае их нельзя считать разделяемыми, так как после прерывания выполнения такого модуля, исполняемого в рамках одного процесса, запусить его еще раз по требованию другого процесса, то промежуточные результаты прерванных вычислений могут быть потерянными.

Противоположны им реентерабельные модули (reenterable допускающий повторное обращение).

Они допускают повторное многократное прерывание своего исполнения и повторный запуск.

Для этого они создаются таким образом, чтобы было обеспечено сохранение промежуточных вычислений и возврат с прерванной точки. Это может быть реализовано двумя способами: с помощью статических и динамических методов выделения памяти под сохраняемые значения.

Чаще используется динамический метод .

С помощью обращения из системной привилегированной секции осуществляется запрос на получение в системной области памяти блока ячеек, необходимого для размещения текущих данных. При этом на вершину стека помещается указатель на начало выделенной области и ее объем. Теперь включается система прерываний (завершилась привилегированная част модуля). Поэтому возможно прерывание во время выполнения основной части модуля. Если прерывание не возникает, то после завершения основной части модуля выполняется запрос на освобождение блока системной области памяти. Если возникает прерывание и другой процесс обращается к этому же самому реентерабельному модулю, для нового процесса вновь заказывается новый блок памяти и на вершину стека записывается новый указатель.

При статическом способе выделения памяти заранее для фиксированного числа процессов резервируются области памяти, в которых будут располагаться переменные реентерабельных модулей. Для каждого процесса – своя область.

Чаще всего такими процессами являются процессы ввода\вывода и речь идет о реентерабельных драйверах, которые могут управлять параллельно несколькими однотипными устройствами).

Существуют еще и повторно входимые (re-entrance) модули. Они также допускают многократное паралльное использование, но в отличие от реентерабельных, их нельзя прерывать. Они состоят из привилегированных секций и повторное обращение к ним возможно только после завершения какой-нибудь из секций. Другими словами, в повторно входимых модулях четко предопределены все допустимые точки входа.

Заметим, что повторно входимые модули встречаются чаще, чем реентерабельные.

Принцип модульности отражает технологические и эксплуатационные свойства системы. Наибольший эффект от его использования достижим в случае, когда принцип распространен одновременно на операционную систему, прикладные программы и аппаратуру.

Принцип функциональной избирательности

В ОС выделяется некоторая часть важных модулей, которые должны постоянно находиться в оперативной памяти для более эффективной организации вычис лительного процесса. Эту часть в ОС называют ядром, так как это действительно основа системы.

При формировании состава ядра требуется учитывать два противоречивых требования.

1) В состав ядра должны войти наиболее часто исполь зуемые системные модули.

2) Количество модулей должно быть таковым, чтобы объем памяти, занимаемый ядром, был бы не слишком большим.

В состав ядра, как правило, входят модули

- по управлению системой прерываний,

- средства по переводу программ из состояния счета в состояние ожидания, готовности и об ратно,

- средства по распределению таких основных ресурсов, как оперативная память и процессор.

Помимо программных модулей, входящих в состав ядра и постоянно располагающихся в оперативной памяти, может быть много других системных программных модулей, которые получают название транзитных. Транзитные программные модули загружаются в оперативную память только при необходимости и в случае отсутствия свободного пространства могут быть замещены другими транзитными модулями.

Принцип генерируемо сти ОС

Основное положение этого принципа определяет такой способ исходного пред ставления центральной системной управляющей программы ОС (ее ядра и ос новных компонентов, которые должны постоянно находиться в оперативной па мяти), который позволял бы настраивать эту системную супервизорную часть, исходя из конкретной конфигурации конкретного вычислительного комплекса и круга решаемых задач.

Эта процедура проводится редко, перед достаточно протяженным периодом эксплуатации ОС.

Процесс генерации осуществляется с по мощью специальной программы-генератора и соответствующего входного языка для этой программы, позволяющего описывать программные возможности системы и конфигурацию машины. В результате генерации получается полная вер сия ОС. Сгенерированная версия ОС представляет собой совокупность системных наборов модулей и данных.

Упомянутый раньше принцип модульности положительно проявляется при гене рации ОС. Он существенно упрощает настройку ОС на требуемую конфигура цию вычислительной системы.

В наши дни при использовании персональных ком пьютеров с принципом генерируемости ОС можно столкнуться разве что только при работе с Linux. В этой UNIX -системе имеется возможность не только использовать какое-либо готовое ядро ОС, но и самому сгенерировать (скомпилировать) такое ядро, которое будет оптимальным для данного конкретного персо нального компьютера и решаемых на нем задач. Кроме генерации ядра в Linux имеется возможность указать и набор подгружаемых драйверов и служб, то есть часть функций может реализовываться модулями, непосредственно входящими в ядро системы, а часть - модулями, имеющими статус подгружаемых, транзит ных.

В остальных современных распространенных ОС для персональных компьютеров конфигурирование ОС под соответствующий состав оборудования осуществляется на этапе инсталляции, а потом состав драйверов и изменение некоторых параметров ОС может быть осуществлено посредством редактирования конфи гурационного файла.

Принцип функциональной избыточности

Этот принцип учитывает возможность проведения одной и той же работы раз личными средствами.

В состав ОС может входить несколько типов мониторов (модулей супервизора, управляющих тем или другим видом ресурса), различные средства организации коммуникаций между вычислительными процессами.

На личие нескольких типов мониторов, нескольких систем управления файлами позволяет пользователям быстро и наиболее адекватно адаптировать ОС к определенной конфигурации вычислительной системы, обеспечить максимально эф фективную загрузку технических средств при решении конкретного класса за дач, получить максимальную производительность при решении заданного класса задач.

Принцип виртуализации

Построение виртуальных ресурсов, их распределение и использование теперь используется практически в любой ОС. Этот принцип позволяет представить структуру системы в виде определенного набора планировщиков процессов и распределителей ресурсов (мониторов) и использовать единую централизован ную схему распределения ресурсов.

Наиболее естественным и законченным проявлением концепции виртуальности является понятие виртуальной машины. По сути, любая операционная система, являясь средством распределения ресурсов и организуя по определенным прави лам управление процессами, скрывает от пользователя и его приложений реаль ные аппаратные и иные ресурсы, заменяя их некоторой абстракцией. В результа те пользователи видят и используют виртуальную машину как некое устройство, способное воспринимать их программы, написанные на определенном языке программирования, выполнять их и выдавать результаты. При таком языковом представлении пользователя совершенно не интересует реальная конфигурация вычислительной системы, способы эффективного использования ее компонен тов и подсистем. Он мыслит и работает с машиной в терминах используемого им языка и тех ресурсов, которые ему предоставляются в рамках виртуальной ма шины.

Чаще виртуальная машина, предоставляемая пользователю, воспроизводит архитектуру реальной машины, но архитектурные элементы в таком представле нии выступают с новыми или улучшенными характеристиками, часто упрощаю щими работу с системой. Характеристики могут быть произвольными, но чаще всего пользователи желают иметь собственную «идеальную» по архитектурным характеристикам машину в следующем составе:

- единообразная по логике работы память (виртуальная) практически неогра ниченного объема. Среднее время доступа соизмеримо со значением этого параметра оперативной памяти. Организация работы с информацией в такой памяти производится в терминах обработки данных - в терминах работы с сегментами данных на уровне выбранного пользователем языка программирования;

- произвольное количество процессоров (виртуальных), способных работать па раллельно и взаимодействовать во время работы. Способы управления процессорами, в том числе синхронизация и информационные взаимодействия, реализованы и доступны пользователям на уровне используемого языка в терминах управления процессами;

- произвольное количество внешних устройств (виртуальных), способных ра ботать с памятью виртуальной машины параллельно или последовательно, асинхронно или синхронно по отношению к работе того или иного виртуального процессора, которые инициируют работу этих устройств. Информация, передаваемая или хранимая на виртуальных устройствах, не ограничена допус тимыми размерами. Доступ к такой информации осуществляется на основе либо последовательного, либо прямого способа доступа в терминах соответст вующей системы управления файлами. Предусмотрено расширение информационных структур данных, хранимых на виртуальных устройствах.

Степень приближения к «идеальной» виртуальной машине может быть большей или меньшей в каждом конкретном случае. Чем больше виртуальная машина, реализуемая средствами ОС на базе конкретной аппаратуры, приближена к «иде альной» по характеристикам машине и, следовательно, чем больше ее архитек турно-логические характеристики отличны от реально существующих, тем боль ше степень виртуальности у полученной пользователем машины.

Одним из аспектов виртуализации является организация возможности выполне ния в данной ОС приложений, которые разрабатывались для других ОС. Други ми словами, речь идет об организации нескольких операционных сред.

Реализация этого принципа позволяет такой ОС иметь очень сильное преимущество перед аналогичными ОС, не имеющими такой воз можности.

Примером реализации принципа виртуализации может служить VDM- машина (virtual DOS machine) - защищенная подсистема, предоставляющая полную среду MS-DOS и консоль для выполнения MS-DOS приложений. Одно временно может выполняться практически произвольное число VDM -сессий. Такие VDM -машины имеются и в системах Microsoft Windows, и в OS/2.

Принцип независимости программ от внешних устройств

Этот принцип реализуется сейчас в подавляющем большинстве ОС общего при менения. Мы уже говорили о нем, рассматривая принципы организации ввода/ вывода. Пожалуй, впервые наиболее последовательно данный принцип был реа лизован в ОС UNIX. Реализован он и в большинстве современных ОС для ПК. Напомним, этот принцип заключается в том, что связь программ с конкретны ми устройствами производится не на уровне трансляции программы, а в период планирования ее исполнения. В результате перекомпиляция при работе программы с новым устройством, на котором располагаются данные, не требуется.

Принцип позволяет одинаково осуществлять операции управления внешними устройствами независимо от их конкретных физических характеристик. Напри мер, программе, содержащей операции обработки последовательного набора дан ных, безразлично, на каком носителе эти данные будут располагаться. Смена носителя и данных, размещаемых на них (при неизменности структурных харак теристик данных), не принесет каких-либо изменений в программу, если в систе ме реализован принцип независимости.

Принцип совместимости

Одним из аспектов совместимости является способность ОС выполнять програм мы, написанные для других ОС или для более ранних версий данной операцион ной системы, а также для другой аппаратной платформы.

Необходимо разделять вопросы двоичной совместимости и совместимости на уров не исходных текстов приложений. Двоичная совместимость достигается в том случае, когда можно взять исполняемую программу и запустить ее на выполнение на другой ОС. Для этого необходимы: совместимость на уровне команд про цессора, совместимость на уровне системных вызовов и даже на уровне библио течных вызовов, если они являются динамически связываемыми.

Совместимость на уровне исходных текстов требует наличия соответствующего транслятора в составе системного программного обеспечения, а также совмести мости на уровне библиотек и системных вызовов. При этом необходима пере компиляция имеющихся исходных текстов в новый выполняемый модуль.

Гораздо сложнее достичь двоичной совместимости между процессорами, осно ванными на разных архитектурах. Для того чтобы один компьютер выполнял про граммы другого (например, программу для ПК типа IBM PC желательно выпол нить на ПК типа Macintosh фирмы Apple), этот компьютер должен работать с машинными командами, которые ему изначально непонятны. В таком случае процессор типа 680x0 (или PowerPC) на Мае должен исполнять двоичный код, предназначенный для процессора 180x86. Процессор 80x86 имеет свои собственные дешифратор команд, регистры и внутреннюю архитектуру. Процессор 680x0 не понимает двоичный код 80x86, поэтому он должен выбрать каждую команду, декодировать ее, чтобы определить, для чего она предназначена, а затем выпол нить эквивалентную подпрограмму, написанную для 680x0. Так как к тому же у 680x0 нет в точности таких же регистров, флагов и внутреннего арифметико- логического устройства, как в 80x86, он должен имитировать все эти элементы с использованием своих регистров или памяти. И он должен тщательно воспро изводить результаты каждой команды, что требует специально написанных под программ для 680x0, гарантирующих, что состояние эмулируемых регистров и флагов после выполнения каждой команды будет в точности таким же, как и на реальном 80x86. Выходом в таких случаях является использование так называемых прикладных сред или эмуляторов. Учитывая, что основную часть программы, как правило, составляют вызовы библиотечных функций, прикладная среда имитирует библиотечные функции целиком, используя заранее написанную биб лиотеку функций аналогичного назначения, а остальные команды эмулирует каждую по отдельности.

Одним из средств обеспечения совместимости программных и пользовательских интерфейсов является соответствие стандартам POSIX. Использование стандарта POSIX позволяет создавать программы в стиле UNIX, которые впоследствии могут легко переноситься из одной системы в другую.

Принцип открытой и наращиваемой ОС

Открытая ОС доступна для анализа как пользователям, так и системным специа листам, обслуживающим вычислительную систему. Наращиваемая (модифици руемая, развиваемая) ОС позволяет не только использовать возможности гене рации, но и вводить в ее состав новые модули, совершенствовать существующие и т. д. Другими словами, необходимо, чтобы можно было легко внести дополне ния и изменения, если это потребуется, и не нарушить целостность системы. Пре красные возможности для расширения предоставляет подход к структурирова нию ОС по типу клиент-сервер с использованием микроядерной технологии. В соответствии с этим подходом ОС строится как совокупность привилегиро ванной управляющей программы и набора непривилегированных услуг - «сер веров». Основная часть ОС остается неизменной и в то же время могут быть до бавлены новые серверы или улучшены старые.

Этот принцип иногда трактуют как расширяемость системы.

К открытым ОС, прежде всего, следует отнести UNIX -системы и, естественно, ОС Linux.

Принцип мобильности (переносимости)

Операционная система относительно легко должна переноситься с процессора одного типа на процессор другого типа и с аппаратной платформы (которая включает наряду с типом процессора и способ организации всей аппаратуры компьютера, иначе говоря, архитектуру вычислительной системы) одного типа на ап паратную платформу другого типа. Заметим, что принцип переносимости очень близок принципу совместимости, хотя это и не одно и то же.

Написание переносимой ОС аналогично написанию любого переносимого кода - нужно следовать некоторым правилам. Во-первых, большая часть ОС должна быть написана на языке, который имеется на всех системах, на которые планируется в дальнейшем ее переносить. Это, прежде всего, означает, что ОС должна быть написана на языке высокого уровня, предпочтительно стандартизованном, на пример на языке С. Программа, написанная на ассемблере, не является в общем случае переносимой. Во-вторых, важно минимизировать или, если возможно, исключить те части кода, которые непосредственно взаимодействуют с аппарат ными средствами. Зависимость от аппаратуры может иметь много форм. Неко торые очевидные формы зависимости включают прямое манипулирование реги страми и другими аппаратными средствами. Наконец, если аппаратно-зависимый код не может быть полностью исключен, то он должен быть изолирован в нескольких хорошо локализуемых модулях. Аппаратно-зависимый код не должен быть распределен по всей системе. Например, можно спрятать аппаратно-зави- симую структуру в программно задаваемые данные абстрактного типа. Другие модули системы будут работать с этими данными, а не с аппаратурой, используя набор некоторых функций. Когда ОС переносится, то изменяются только эти данные и функции, которые ими манипулируют.

Введение стандартов POSIX преследовало цель обеспечить переносимость создаваемого программного обеспечения.

Принцип обеспечения безопасности вычислений

Обеспечение безопасности при выполнении вычислений является желательным свойством для любой многопользовательской системы. Правила безопасности определяют такие свойства, как защита ресурсов одного пользователя от других и установление квот по ресурсам для предотвращения захвата одним пользова телем всех системных ресурсов (таких, как память).

Обеспечение защиты информации от несанкционированного доступа является обязательной функцией сетевых операционных систем.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

операционный система совместимость программа

Принципы построения ОС

1.) Принцип модульности - под модулем в общем случае понимают функционально законченный элемент системы, выполненный в соответствии с принятыми межмодульными интерфейсами. По своему определению модуль предполагает возможность легкой замены его на другой при наличии заданных интерфейсов. В значительной степени разделение системы на модули определяется используемым методом проектирования ОС (снизу вверх или наоборот).

Особое значение при построение ОС имеют привилегированные, повторно входимые и реентерабельные модули (рентабельность - дословно повторновходимость; специальный термин для обозначения работоспособности программы; свойство программы корректно выполняться при рекурсивном (возвращаемом) вызове из прерывания).

Наибольший эффект от использования данного принципа достижим в случае одновременного распространения данного принципа на ОС, прикладные программы и аппаратуру.

2.) Принцип функциональной избирательности - в ОС выделяется некоторая часть важных модулей, которые должны постоянно находится в оперативной памяти для более эффективной организации вычислительного процесса. Эту часть в ОС называют ядром, так как это - основа системы. При формировании состава ядра приходится учитывать два противоречивых требования. С одной стороны, в состав ядра должны войти наиболее часто используемые системные модули, с другой - количество модулей должно быть таковым, чтобы объем памяти, занимаемый ядром, не был слишком большим. Помимо программных модулей, входящих в состав ядра и постоянно располагающихся в оперативной памяти, может быть много других системных программных модулей, которые получают название транзитных. Транзитные программные модули загружаются в оперативную память только при необходимости и в случае отсутствия свободного пространства могут быть замещены другими транзитными модулями.

3.) Принцип генерируемости ОС: суть принципа состоит в организации (выборе) такого способа исходного представления центральной системной управляющей программы ОС (ядра и постоянно находящихся в оперативной памяти основных компонентов), который позволял настраивать эту системную супервизорную часть исходя из конкретной конфигурации конкретного вычислительного комплекса и круга решаемых задач. Эта процедура проводится редко перед достаточно протяженным периодом эксплуатации ОС. Процесс генерации осуществляется с помощью специальной программы-генератора и соответствующего входного языка для этой программы, позволяющего описывать программные возможности системы и конфигурацию машины. В результате генерации получается полная версия ОС. Сгенерированная версия ОС представляет собой совокупность системных наборов модулей и данных.

4.) Принцип функциональной избыточности: Этот принцип учитывает возможность проведения одной и той же работы различными средствами. В состав ОС может входить несколько типов мониторов (модулей супервизора, управляющих тем или другим видом ресурса), различные средства организации коммуникаций между вычислительными процессами. Наличие нескольких типов мониторов, нескольких систем управления файлами позволяет пользователям быстро и наиболее адекватно адаптировать ОС к определенной конфигурации вычислительной системы, обеспечивать максимально эффективную загрузку технических средств при решении конкретного класса задач, получать максимальную производительность при решении заданного класса задач.

5.) Принцип виртуализации: построение виртуальных ресурсов, их распределение и использование в настоящее время применяется практически в любой ОС. Этот принцип позволяет представить структуру системы в виде определенного набора планировщиков процессов и распределителей ресурсов (мониторов) и использовать единую централизованную схему распределения ресурсов.

Наиболее естественным и законченным проявлением концепции виртуальности является понятие виртуальной машины. Виртуальная машина, предоставляемая пользователю, воспроизводит архитектуру реальной машины, но архитектурные элементы в таком представлении выступают с новыми или улучшенными характеристиками, как правило, упрощающими работу с системой. Характеристики могут быть произвольными, но чаще всего пользователи желают иметь собственную «идеальную» по архитектурным характеристикам машину в следующем составе:

Единообразная по логике работы виртуальная память практически неограниченного объема.

Произвольное количество виртуальных процессоров, способных работать параллельно и взаимодействовать во время работы.

Произвольное количество внешних виртуальных устройств, способных работать с памятью виртуальной машины параллельно или последовательно, асинхронно или синхронно по отношению к работе того или иного виртуального процессора, инициирующего работу этих устройств.

Одним из аспектов виртуализации является организация возможности выполнения в данной ОС приложений, которые разрабатывались для других ОС. Другими словами, речь идет об организации нескольких операционных сред.

6.) Принцип независимости программ от внешних устройств: этот принцип реализуется сейчас в подавляющем большинстве ОС общего применения. Впервые наиболее последовательно данный принцип был реализован в ОС UNIX. Реализован он и в большинстве современных ОС для ПК. Этот принцип заключается в том, что связь программ с конкретными устройствами производится не на уровне трансляции программы, а в период планирования ее исполнения. В результате перекомпиляция при работе программы с новым устройством, на котором располагаются данные, не требуется.

7.) Принцип совместимости: одним из аспектов совместимости является способность ОС выполнять программы, написанные для других ОС или для более ранних версий данной ОС, а также для другой аппаратной платформы. Необходимо разделять вопросыдвоичной совместимости и совместимости на уровне исходных текстов приложений.

Двоичная совместимость достигается в том случае, когда можно взять исполняемую программу и запустить ее на выполнение на другой ОС. Для этого необходимы совместимость на уровне команд процессора, и совместимость на уровне системных вызовов, и даже на уровне библиотечных вызовов, если они являются динамически связываемыми.

Совместимость на уровне исходных текстов требует наличия соответствующего транслятора в составе системного программного обеспечения, а также совместимости на уровне библиотек и системных вызовов. При этом необходима перекомпиляция имеющихся исходных текстов в новый выполняемый модуль.

Гораздо сложнее достичь двоичной совместимости между процессорами, основанными на разных архитектурах. Для того чтобы один компьютер выполнял программы другого (например, программу для ПК типа IBM PC желательно выполнить на ПК типа Macintosh фирмы Apple), этот компьютер должен работать с машинными командами, которые ему изначально непонятны. В таком случае процессор типа 680?0 (или PowerPC) должен исполнять двоичный код, предназначенный для процессора i80x86. Процессор 80?86 имеет свои собственные дешифратор команд, регистры и внутреннюю архитектуру. Процессор 680?0 не понимает двоичный код 80?86, поэтому он должен выбрать каждую команду, декодировать ее, чтобы определить, для чего она предназначена, а затем выполнить эквивалентную подпрограмму, написанную для 680?0.

Одним из средств обеспечения совмести-мости программных и пользовательских интерфейсов является соответствие стандартам POSIX, использование которого позволяет создавать программы в стиле UNIX, легко переносимых впоследствии из одной системы в другую.

8.) Принцип открытости и наращиваемости: Открытая операционная система доступна для анализа как пользователям, так и системным специалистам, обслуживающим вычислительную систему. Наращиваемая (модифицируемая, развиваемая) ОС позволяет не только использовать возможности генерации, но и вводить в ее состав новые модули, совершенствовать существующие и т.д. Другими словами, следует обеспечить возможность легкого внесения дополнений и изменений в необходимых случаях без нарушения целостности системы. Прекрасные возможности для расширения предоставляет подход к структурированию ОС по типу клиент-сервер с использованием микро-ядерной технологии. В соответствии с этим подходом ОС строится как совокупность привилегированной управляющей программ-мы и набора непривилегированных услуг (серверов). Основная часть ОС остается неизменной, и в то же время могут быть добавлены новые серверы или улучшены старые. Этот принцип иногда трактуют как расширяемость системы.

9.) Принцип мобильности: операционная система относительно легко должна переноситься с процессора одного типа на процессор другого типа и с аппаратной платформы одного типа, которая включает наряду с типом процессора и способ организации всей аппаратуры компьютера (архитектуру вычислительной системы), на аппаратную платформу другого типа. Заметим, что принцип переносимости очень близок принципу совместимости, хотя это и не одно и то же. Создание переносимой ОС аналогично написанию любого переносимого кода, при этом нужно следовать некоторым правилам:

Большая часть ОС должна быть выполнена на языке, имеющемся на всех системах, на которые планируется в дальнейшем ее переносить. Это, прежде всего, означает, что ОС должна быть написана на языке высокого уровня, предпочтительно стандартизованном, например на языке С. Программа, написанная на ассемблере, не является в общем случае переносимой.

Важно минимизировать или, если возможно, исключить те части кода, которые непосредственно взаимодействуют с аппаратными средствами. Зависимость от аппаратуры может иметь много форм. Некоторые очевидные формы зависимости включают прямое манипулирование регистрами и другими аппаратными средствами. Наконец, если аппаратно-зависимый код не может быть полностью исключен, то он должен быть изолирован в нескольких хорошо локализуемых модулях. Аппаратно-зависимый код не должен быть распределен по всей системе. Например, можно спрятать аппаратно-зависимую структуру в программно задаваемые данные абстрактного типа.

Введение стандартов POSIX преследовало цель обеспечить переносимость создаваемого программного обеспечения.

10.) Принцип обеспечения безопасности вычислений: обеспечение безопасности при выполнении вычислений является желательным свойством для любой много-пользовательской системы. Правила безопасности определяют такие свойства, как защиту ресурсов одного пользователя от других и установление квот по ресурсам для предотвращения захвата одним пользователем всех системных ресурсов, таких, например, как память.

Размещено на Allbest.ru

Подобные документы

    Назначение, классификация, состав и назначение компонентов операционных систем. Разработка сложных информационных систем, комплексов программ и отдельных приложений. Характеристика операционных систем Windows, Linux, Android, Solaris, Symbian OS и Mac OS.

    курсовая работа , добавлен 19.11.2014

    Основные понятия операционных систем. Синхронизация и критические области. Сигналы и взаимодействие между процессами. Управление памятью. Драйверы устройств. Особенности современных операционных систем. Центральный процессор, микросхемы часов и таймеров.

    учебное пособие , добавлен 24.01.2014

    Основные понятия об операционных системах. Виды современных операционных систем. История развития операционных систем семейства Windows. Характеристики операционных систем семейства Windows. Новые функциональные возможности операционной системы Windows 7.

    курсовая работа , добавлен 18.02.2012

    Изучение особенностей операционной системы, набора программ, контролирующих работу прикладных программ и системных приложений. Описания архитектуры и программного обеспечения современных операционных систем. Достоинства языка программирования Ассемблер.

    презентация , добавлен 22.04.2014

    Назначение и основные функции операционных систем. Загрузка в оперативную память подлежащих исполнению программ. Обслуживание всех операций ввода-вывода. Эволюция, классификация операционных систем. Формирование ведомости зарплаты, сортировка по отделам.

    курсовая работа , добавлен 17.03.2009

    Проблемы и тенденции проектирования операционных систем, структура ОС. Руководящие принципы при разработке интерфейса. Парадигмы пользователя, исполнения и данных. Примеры применения ортогональности и связывания. Методы практической реализации систем.

    реферат , добавлен 26.01.2011

    Понятие и функции операционных систем, их классификация и структура, принципы работы. Виды операционных систем и их краткая характеристика: DOS, Window-95. Достоинства и недостатки Microsoft Windows XP. Создание локальных сетей. Глобальная сеть Internet.

    контрольная работа , добавлен 26.06.2014

    Характеристика сущности, назначения, функций операционных систем. Отличительные черты их эволюции. Особенности алгоритмов управления ресурсами. Современные концепции и технологии проектирования операционных систем, требования, предъявляемые к ОС XXI века.

    курсовая работа , добавлен 08.01.2011

    История появления первых операционных систем, мультипрограммные операционные системы для мэйнфреймов. Первые локальные и глобальные сети. Развитие операционных систем в 80-е годы. Построение двумерных графиков в MathCAD, решение систем уравнений.

    контрольная работа , добавлен 11.06.2014

    Использование операционных систем. Контрольно-испытательные методы анализа безопасности программного обеспечения. Логико-аналитические методы контроля безопасности программ и оценка технологической безопасности программ на базе метода Нельсона.

В общем случае понимают функционально законченный элемент системы, выполненный в соответствии с принятыми межмодульными интерфейсами . По своему определению модуль предполагает возможность без труда заменить его на другой при наличии заданных интерфейсов. Способы обособления составных частей ОС в отдельные модули могут существенно различаться, но чаще всего разделение происходит именно по функциональному признаку. В значительной степени разделение системы на модули определяется используемым методом проектирования ОС (восходящее или нисходящее проектирование).

Особо важное значение при построении ОС имеют привилегированные, повторно входимые и реентерабельные модули, так как позволяют более эффективно использовать ресурсы вычислительной системы. Достижение реентерабельности реализуется различными способами. В некоторых системах реентерабельность программы получается автоматически, благодаря неизменяемости кодовых частей программ при исполнении (из-за особенностей системы команд машины), а также автоматическому распределению регистров, автоматическому отделению кодовых частей программ от данных и помещению последних в системную область памяти. Естественно, что для этого необходима соответствующая аппаратная поддержка. В других случаях это достигается программистами за счет использования специальных системных модулей.

Принцип модульности отражает технологические и эксплуатационные свойства системы. Наибольший эффект от его использования достижим в случае, когда принцип распространен одновременно на операционную систему, прикладные программы и аппаратуру.